一种改进的自适应滤波器的状态估计,效果非常之好,是用MATLAB编写的,直接在matlab下运行就可以看到完美的滤波效果,自适应算法是sage—husa算法,较传统的滤波器有很大提高
上传时间: 2014-01-16
上传用户:huql11633
关于电力系统状态估计快速分解算法的MATLAB程序
上传时间: 2013-12-22
上传用户:Thuan
如何估计机器人在空间中移动时的状态(如位置、方向)是机器人研究中一个重要的问题。大多数机器人、自动驾驶汽车都需要导航信息。导航的数据来自于相机、激光测距仪等各种传感器,而它们往往受噪声影响,这给状态估计带来了挑战。本书将介绍常用的传感器模型,以及如何在现实世界中利用传感器数据对旋转或其他状态变量进行估计。本书涵盖了经典的状态估计方法(如卡尔曼滤波)以及更为现代的方法(如批量估计、贝叶斯滤波、sigmapoint 滤波和粒子滤波、剔除外点的鲁棒估计、连续时间的轨迹估计和高斯过程回归)。这些方法在诸如点云对齐、位姿图松弛、光束平差法以及同时定位与地图构建等重要应用中得以验证。对机器人领域的学生和相关从业者来说,本书将是一份宝贵的资料。
标签: 机器人
上传时间: 2022-05-23
上传用户:
在早期阶段,直流调速系统在传动领域中占统治地位。然而,从60年代后期开始,交流电动机在工业应用领域正在取代直流电动机,交流传动变得越来越经济和受欢迎。永磁交流伺服系统作为电气传动领域的重要组成部分,在工业、农业、航空航天等领域发挥越来越重大的作用。永磁同步电动机以其特点广泛应用于中小功率传动场合,成为研究的重要领域。然而,永磁同步电动机具有较大的转动脉动,而对于这些应用场合,转矩平滑通常是基本要求。因此,对永磁交流伺服系统的应用,必须考虑其转矩脉动的抑制问题。本文针对电机传动系统中参数变化对电机性能的影响,以永磁同步电机为例,围绕如何通过参数辨识来提高永磁同步电动机的控制性能,借助自行开发的全数字永磁交流伺服系统平台,对永磁同步电动机的磁场定向控制,参数辨识,神经网络和扩展卡尔曼滤波在控制系统中的应用,抑制转矩脉动,提高系统性能几个方面展开深入的研究。 本文从永磁同步电动机及其控制系统的基本结构出发,对通过参数辨识抑制转矩脉动进行了较为细致的分析。针对不同情况,通过改进电机的控制系统,提出了多种参数辨识方法。主要内容如下: 1、基于定子磁链方程,建立了永磁同步电动机的一般数学模型。经坐标变换,得出在静止两相(α—β)坐标系和旋转两相(d—q)坐标系下永磁同步电动机电压方程和转矩方程。 2、分析了永磁同步电动机id=0矢量控制系统的工作原理,介绍了永磁同步电动基于磁场定向的矢量控制的基本概念。经对永磁同步电动机系统进行分析,推导并建立了id=0控制时整个电机系统的数学模型。 3、基于超稳定性理论的模型参考自适应控制原理,设计了一种模型参考自适应控制系统,考虑电机参数的时变性,对永磁交流伺服系统的绕组电阻和电机负载转矩辨识进行了研究,以保持系统的动态性能。利用Matlab/Simulink建立仿真模型,对控制性能进行了验证,仿真实验证明这种方法的可行性。 4、人工神经网络具有很强的学习性能,经过训练的多层神经网络能以任意精度逼近非线性函数,因此为非线性系统辨识提供了一个强有力的工具。本章针对永磁同步电机提出了一种以电机输出转速为目标函数的神经网络控制方案,同时应用人工神经网络理论建立和设计了负载转矩扰动辨识的算法以及相应的控制系统的补偿方法,并应用MATLAB软件进行了计算机仿真,仿真证明和传统的控制方法相比,以电机输出转速为指导值和目标函数的神经网络控制方案能有效地提高神经网络的收敛速度,能有效地改善控制系统的动态响应,具有跟踪性能好和鲁棒性较强等优点。 5、电机的参数会随着温升和磁路饱和发生变化,需进行在线实时辨识。本文利用电机的定子电流、电压和转速,采用递推最小二乘法进行在线参数辨识,该方法不需要观测的磁链信号,消除了磁链观测和参数辨识的耦合。电机状态方程由于存在状态变量的乘积项,对电机参数辨识以后,仍然是非线性方程,为了对电机状态方程进行状态估计,得到电机的参数辨识值,本文采用扩展卡尔曼滤波进行状态估计,对以上方法的仿真实验得到了满意的结果。 6、本文基于数字电机控制专用DSP自行开发了全数字永磁交流伺服系统平台,通过软件实现扩展卡尔曼滤波对电阻和磁链的估计,以及基于磁场定向的空间矢量控制算法,获得了令人满意的实验结果,证明扩展卡尔曼滤波算法对电阻和磁链的实时估计是很准确的,由此构成的永磁交流伺服系统具有良好的静、动态性能。
上传时间: 2013-07-28
上传用户:凤临西北
随着对电能应用高效率的要求,基于电力电子技术的非线性负载等开关设备的应用越来越普遍,这些开关设备造成的谐波成分对电网的污染也越来越严重。这些谐波会影响其它电气设备的正常工作,危及电网安全。电力有源滤波器由于能对频率和幅值都变化的谐波进行跟踪补偿,得到了广泛的研究。 本文是在课题组380V、260kVA纯有源电力滤波器项目方案的论证阶段,为提高大容量单台纯有源滤波器的效率和动、稳态性能而做的分析、设计和仿真验证工作。论文首先介绍了通过LCL滤波器与电网相连的并联电力有源滤波器的主电路结构,进而分析了这种主电路结构在大容量和低开关频率场合对开关纹波衰减的优势。通过比较PI控制和状态反馈控制,选取全状态反馈来达到对系统的稳定控制。 将电网处理为扰动输入,对LCL主电路在静止abc坐标系中进行了建模,然后选取系统闭环期望极点设计了控制系统。为消除电网这个外部输入对指令电流跟踪的影响,引入了电压前馈,并从理论上推导了前馈的具体关系式。之后引入了观测器,并把对电网输入的建模考虑进了观测器,消除了电网输入对状态估计和补偿输出造成的偏差。在电力有源滤波器实际安装时,电网进线和变压器的电感是不确定的,其会加在LCL的网侧电感上,从而使对系统基于状态空间的建模产生偏差,因此文章研究了所设计的控制器对LCL网侧电感变化的适应性。为保证电力有源滤波器的稳态指标,对状态反馈后的系统设计了重复控制器。 最后,基于设计的控制器在MATLAB/Simulink环境下建立了对1MW不控整流负载进行补偿的电力有源滤波器系统模型,进行了仿真;并对动静态性能进行了分析,验证了设计和理论分析的正确性。
上传时间: 2013-06-20
上传用户:哇哇哇哇哇
随着这些年计算机硬件水平的发展, 计算速度的提高, 源自序列蒙特卡罗方法的蒙特卡罗粒子滤波方法的应用研究又重新活跃起来。本文的这种蒙特卡罗粒子滤波算法是利用序列重要性采样的概念, 用一系列离散的带权重随机样本近似相 应的概率密度函数。由于粒子滤波方法没有像广义卡尔曼滤波方法那样对非线性系统做线性化的近似, 所以在非线性状态估计方面比广义卡尔曼滤波更有优势。在很多方面的应用已经逐渐有替代广义卡尔曼滤波的趋势。
上传时间: 2014-09-10
上传用户:671145514
本文提出了有模型指导的三维人体运动跟踪框架,将一个多关节的圆台形状三维人体模型与多个视频图像中的外轮廓、边界、灰度和肤色特征进行匹配,使人体运动跟踪变成一个状态估计问题。并且,使用基于概率模型的粒子滤波算法来完成非线性、非高斯动态系统的状态估计。
上传时间: 2014-05-26
上传用户:zsjzc
粒子滤波算法受到许多领域的研究人员的重视,该算法的主要思想是使用一个带有权值的粒子集合来表示系统的后验概率密度。在扩展卡尔曼滤波和Unscented卡尔曼滤波算法的基础上,本文提出一种新型粒子滤波算法。首先用Unscented卡尔曼滤波器产生系统的状态估计,然后用扩展卡尔曼滤波器重复这一过程并产生系统在k时刻的最终状态估计。在实验中,针对非线性程度不同的两种系统,分别采用五种粒子滤波算法进行实验。结果证明,本文所提出算法的各方面性能都明显优于其他四种粒子滤波算法。
上传时间: 2013-12-24
上传用户:hzy5825468
Rebel工具包,包括UKF,CDKF在内的多种粒子滤波算法仿真,是非线性系统状态估计的良好帮手
上传时间: 2013-12-30
上传用户:wfeel
1,改进BP神经网络在股市预测中的应用.2,基于MATLAB工具箱的开采煤层自燃危险性预测.3,基于改进的神经网络的电力系统负荷预报.4,基于神经网络的灌溉用水量预测.5,基于遗传算法改进BP网络的地表沉陷预计.6,利用遗传算法改进BP学习算法.7,模糊神经网络在电力市场短期负荷预测中的应用.8,神经网络学习算法存在的问题及对策.9,遗传神经网络在电力系统短期负荷预测中的应用.10,应用改进BP神经网络进行用水量预测.11,用遗传算法改进的BP模型在刹车系统诊断中的应用研究.12,遗传算法改进的BP神经网络对汛期三门峡水库泥沙冲淤量的计算13,基于遗传算法的人工神经网络学习算法14.自适应遗传算法优化管网状态估计神经网络模型.15,基于GA_RBF神经网络的电梯交通流模式识别的研究
上传时间: 2013-12-27
上传用户:chenjjer