基于Snake 模型的图像分割技术是近年来图像处理领域的研究热点之一。Snake 模型承载上层先验知识并融合 了图像的底层特征,针对医学图像的特殊性,能有效地应用于医学图像的分割中。本文对各种基于Snake 模型的改进算法和 进化模型进行了研究,并重点梳理了最新的研究成果,以利于把握基于Snake 模型的医学图像分割方法的脉络和发展方向。
上传时间: 2014-01-23
上传用户:BIBI
《贝斯方法与Dempster_Shafer证据理论的讨论》《RBF神经网络与证据理论相结合的特征级信息融合方法的研究》
标签: Dempster_Shafer RBF 神经网络 特征
上传时间: 2013-12-10
上传用户:wpt
融合WMD矩阵与2DPCA的人脸特征抽取与识别
上传时间: 2016-06-14
上传用户:qiao8960
多传感器信息融合是对多种信息的获取、表示及其内在联系进行综合处理和优化的技术。单一传感器只能获得环境或被测对象的部分信息段,多传感器信息融合后可以完善地、准确地反映环境特征。本文介绍多传感器数据融合的基本理论。数据融合是把来自不同传感器数据加以综合、相关、互联,提高定位和特征估计的精度。文章对Kalman融合算法进行仿真,对结果进行分析。验证算法的可行性。
上传时间: 2013-10-08
上传用户:zhaoke2005
传统多模态生物特征识别方法当出现生物特征缺失时,识别性能会明显下降。针对此问题,提出一种融合人脸、虹膜和掌纹的自适应并行结构多模态生物识别方法。该方法在设计融合策略时,考虑到所有可能的输入缺失,构造并行结构的融合函数集,在实际应用时根据输入状态自适应的选择融合策略进行识别。实验仿真结果表明该方法既可提高识别可靠性又可实现当有生物特征缺失时的性能稳定。
上传时间: 2013-11-02
上传用户:huangld
针对传感器网络下多目标跟踪时目标数量不断变化这一复杂情况,文中对多目标的跟踪和特征管理方法进行了研究。该方法由数据关联、多目标跟踪、特征管理,和信息融合所组成。其中未知数量多目标的跟踪和数据关联通过马尔科夫蒙特卡罗数据关联实现。通过信息融合来整合本地信息,获取所有相邻传感器的本地一致性,最终实现特征管理。试验证明,本方法能够在分布式的传感器网络环境下对多目标进行准确有效地跟踪和特征管理。
上传时间: 2013-11-18
上传用户:wangdean1101
小波工具箱的应用基础 395 16.1 一维小波分析的应用 395 16.1.1 小波分解在普通信号分析中的应用 395 16.1.2 小波变换在信号特征检测中的应用 411 16.2 二维小波分析的应用 417 16.2.1 小波分析在图像平滑中的应用 417 16.2.2 小波分析在图像增强中的应用 418 16.2.3 小波分析在图像融合中的应用 420 16.3 小波包分析的应用 422 16.3.1 小波包在信号时频分析中的应用 423 16.3.2 小波包在图像边缘检测中的应用 429
上传时间: 2014-01-14
上传用户:小草123
针对目前的基于特征的图像检索中没有有效地结合图像中对象空间信息的问题,提 出了一种新的融合了颜色、空间和纹理特征的图像特征提取及匹配方法。为了减少时间 间复杂度,首先通过基于普通颜色直方图的检索得到初始图像集合,然后根据提出的结合空间、纹理特征加权度量对初始图像集合再进行检索,从而得到最后更符合要求的相似图象
上传时间: 2014-01-10
上传用户:wang5829
人口老龄化是世界各国正在面对的一个普遍问题。随着我国老龄化程度的持续加剧,对于老年人群体的医疗资源投入会不断提高。而与此同时,跌倒已经成为老年人日常生活中最为常见的危险行为活动。所以,跌倒检测系统的研究和应用对降低老年人受到的身心伤害和医疗成本具有显著的意义。目前解决老年人跌倒检测的方案仍存在许多不足。其中,基于计算机视觉的跌倒检测技术在无干扰的场景下检测较为有效,但其易受环境变化(如背景光线影响、人遮挡问题等)影响。此外,基于可穿戴计算的跌倒检测技术受限于算法稳定性和识别准确率,系统的灵敏度和特异性难以同时得到保证。针对上述问题本文提出一种融合计算机视觉和可穿戴计算数据的跌倒检测新的方法。首先,设计并开发了集成三轴加速度计、三轴陀螺仪和蓝牙的活动感知模块,实现实时采集、传输人体活动数据:其次,使用深度学习算法从摄像头采集的图像数据提取人体姿态特征数据:最后,对采集的人体活动数据和姿态数据进行规范化和时序化处理,设计了两个深度学习网络分别对数据进行特征提取,并将两特征进行特征层数据融合,在此基础上构建神经网络对融合数据进行活动本文搭建了实验平台并进行了算法测试,其中,本文跌倒检测算法针对离线测试数据的准确率为992%,平均敏感度为995%、平均特异性为99.8%:针对在线数据系统测试准确率为98.9%、平均敏感度为99.2%、平均特异性为99.5%实验结果证明了利用计算机视觉和可穿戴计算数据融合的跌倒检测具有较高的准确率和鲁棒性。
上传时间: 2022-03-14
上传用户:bluedrops
随着杜会和经济的发展,环境水污染现象也日趋严重,迫切需要环境水质多参数监测与智能分析系统,以为环境监测、管理和控制提供科学的手段。水质多组分检测涉及到多传感器数据融合、计算机技术、电化学分析和人工智能等多学科的交叉,在众多领域有着广泛的应用。本论文研究环境水质检测与智能分析系统,论文的主要工作包括1)基于最小二乘支持向量机的在线自适应加权数据融合算法多传感器数据融合由于能够利用互补和冗余的信息,显著提高系统的可靠性而得到了广泛应用,而数据融合的关键问题是融合算法。本文深入研究了多传感器数据融合理论的基础上,针对传统融合算法研究存在的问题,提出了一种基于最小二乘支持向量机的在线自适应加权数据融合算法,并应用到水质在线检测过程中,不仅缩短了训练的时间,而且提高了融合的可靠性和灵活性2)提出了一种离子传感器的基于最小二乘支持向量机的自校正方法:由于离子传感器的非线性、漂移和交叉敏感性等影响了其检测精度和可靠性,难以进行连续在线检测。以硝酸根离子传感器为例,研究其自校正方法,以适应动态环境的连续监测根据实验数据,详细分析了硝酸根离子传感器的响应特性,并考虑了零点和时间漂移,提出了一种基于最小二乘支持向量机硝酸根离子传感器的自校正方法,给出了详细描述和分析。3)离子传感器故障检测的小波支持向量机特征提取和支持向量机分类方法在线连续检测的应用要求离子传感器必须具有很高的可靠性,即能够及时准确地判断出离子传感器的故障。本文采用小波支持向量机提取各传感器故障特征,再用支持向量机对故障进行分类,实现对各离子传感器的故障诊断。
标签: 数据融合
上传时间: 2022-03-18
上传用户: