目前,数字信号处理广泛应用于通信、雷达、声纳、语音与图像处理等领域,信号处理算法理论己趋于成熟,但其具体硬件实现方法却值得探讨。FPGA是近年来广泛应用的超大规模、超高速的可编程逻辑器件,由于其具有高集成度、高速、可编程等优点,大大推动了数字系统设计的单片化、自动化,缩短了单片数字系统的设计周期、提高了设计的灵活性和可靠性,在超高速信号处理和实时测控方面有非常广泛的应用。本文对FPGA的数据采集与处理技术进行研究,基于FPGA在数据采样控制和信号处理方面的高性能和单片系统发展的新热点,把FPGA作为整个数据采集与处理系统的控制核心。主要研究内容如下: FPGA的单片系统研究。针对数据采集与处理,对FPGA进行选型,设计了基于FPGA的单片系统的结构。把整个控制系统分为三个部分:多通道采样控制模块,数据处理模块,存储控制模块。 多通道采样控制模块的设计。利用4片AD7506和一片AD7862对64路模拟量进行周期采样,分别设计了通道选择控制模块和A/D转换控制模块,并进行了仿真,完成了基于FPGA的多通道采样控制。 数据处理模块的设计。FFT算法在数字信号处理中占有重要的地位,因此本文研究了FFT的硬件实现结构,提出了用FPGA实现FFT的一种设计思想,给出了总体实现框图。分别设计了旋转因子复数乘法器,碟形运算单元,存储器,控制器,并分别进行了仿真。重点设计实现了FFT算法中的蝶形处理单元,采用了一种高效乘法器算法设计实现了蝶形处理单元中的旋转因子乘法器,从而提高了蝶形处理器的运算速度,降低了运算复杂度。理论分析和仿真结果表明,状态机控制器成功地对各个模块进行了有序、协调的控制。 存储控制模块的设计。利用闪存芯片K9K1G08UOA对采集处理后的数据进行存储,设计了FPGA与闪存的硬件连接,设计了存储控制模块。 本文对FFT算法的硬件实现进行了研究,结合单片系统的特点,把整个系统分为多通道采样控制模块,数据处理模块,存储控制模块进行设计和仿真。设计采用VHDL编写程序的源代码。仿真测试结果表明,此FPGA单片系统可完成对实时信号的高速采集与处理。
上传时间: 2013-07-06
上传用户:eclipse
随着现场可编程门阵列(FPGA,Field Programmable Gate Array)的出现,由于其具有集成度高、体积小,可在线编程、开发周期短等优点,因此FPGA被越来越多的应用于数据采集与处理系统中。 论文首先简要介绍了数据采集与处理系统的现状、存在的问题、以及发展的趋势。本数据处理与传输系统采用了ALTERA公司的FPGA芯片,整个系统由数据采集模块、异步FIFO模块、FFT处理模块、DMA控制模块、总线接口模块构成。模拟信号送入后,经AD芯片ADl672转换成数字信号,送入异步FIFO中缓冲,然后进行FFT处理。处理结果向PC104总线进行DMA传输。整个系统做成扩展卡的形式,直接插入PC104插槽内。 在软件方面,从系统功能实现的角度对软件总体设计进行规划,采用模块化的软件设计方法使系统的各部分软硬件更易于设计、实现和调整,文中对系统设计及实现中的关键问题进行了较为详细的描述。经过系统分析、芯片选择、软硬件设计与编程调试,实现整个系统。达到了预期的目标。
上传时间: 2013-07-15
上传用户:jcljkh
数字信号处理是信息科学中近几十年来发展最为迅速的学科之一。常用的实现高速数字信号处理的器件有DSP和FPGA。FPGA具有集成度高、逻辑实现能力强、速度快、设计灵活性好等众多优点,尤其在并行信号处理能力方面比DSP更具优势。在信号处理领域,经常需要对多路信号进行采集和实时处理,为解决这一问题,本文设计了基于FPGA的数据采集和处理系统。 本文首先介绍数字信号处理系统的组成和数字信号处理的优点,然后通过FFT算法的比较选择和硬件实现方案的比较选择,进行总体方案的设计。在硬件方面,特别讨论了信号调理模块、模数转换模块、FPGA芯片配置等功能模块的设计方案和硬件电路实现方法。信号处理单元的设计以Xilinx ISE为软件平台,采用VHDL和IP核的方法,设计了时钟产生模块、数据滑动模块、FFT运算模块、求模运算模块、信号控制模块,完成信号处理单元的设计,并采用ModelSim仿真工具进行相关的时序仿真。最后利用MATLAB对设计进行验证,达到技术指标要求。
上传时间: 2013-07-07
上传用户:小火车啦啦啦
人体血液成份的无创检测是生物医学领域尚未攻克的前沿课题之一,动态光谱法在理论上克服了其它检测方法难以逾越的障碍——个体差异和测量条件对检测结果的影响。实现动态光谱检测,其关键在于采集多波长的光电容积脉搏波信号,并对其进行处理。针对动态光谱检测中信号微弱、信噪比低、处理数据量大的特点,本文设计了基于FPGA和面阵CCD摄像头的动态光谱数据采集与预处理系统,提高检测精度,采集出满足动态光谱信号提取要求的光电脉搏波;并对动态光谱频域提取法的核心算法FFT的FPGA实现进行研究。 课题提出用高灵敏度的面阵CCD摄像头替代常规光栅光谱仪中的光电接收器,实现对多波长的光电容积脉搏波的检测。结合面阵CCD的二维图像特点,采用信号累加法去除噪声,提高信号的信噪比。 创新性的提出一种不同于以往的信号累加方法——将处于同一行的视频信号在采样过程中直接累加,然后再进行传输和存储。不同于帧累加和异行累加,这种同行累加方式不但大大的提高了信号的信噪比,同时减小了数据的传输速度和传输量,降低了对存储器容量的要求,改善了动态光谱信号检测系统的性能。 针对面阵CCD摄像头输出的复合视频信号的特点,设计视频信号解调电路,得到高速、高精度的数字视频信号和准确的视频同步信号,用于后续的视频信号采集与处理。 根据动态光谱信号检测和视频信号采集的要求,选择可编程逻辑器件FPGA作为硬件平台,设计并实现了基于FPGA和面阵CCD摄像头的光电脉搏波采集与预处理系统。该系统实现了视频信号的精确定位,通过光谱信号的高速同行累加,实现了光电脉搏波信号的高精度检测。系统采用基于FPGA的Nios II嵌入式处理器系统,通过对其应用程序的开发,可靠的实现了数据的采集、传输和存储,提高了系统的集成度,降低了开发成本。 为实现动态光谱信号的频域提取,研究了基于FPGA的FFT实现方案,对各关键模块进行设计,为动态光谱信号的进一步处理打下良好的基础。 最后,通过实验证明了系统数据采集的正确性和信号预处理的可行性,得到了符合动态光谱信号提取要求的脉搏波信号。
上传时间: 2013-04-24
上传用户:cknck
数据采集系统是信号与信息处理系统中不可缺少的重要组成部分,同时也是软件无线电系统中的核心模块,在现代雷达系统以及无线基站系统中的应用越来越广泛。为了能够满足目前对软件无线电接收机自适应性及灵活性的要求,并充分体现在高性能FPGA平台上设计SOC系统的思路,本文提出了由高速高精度A/D转换芯片、高性能FPGA、PCI总线接口、DB25并行接口组成的高速数据采集系统设计方案及实现方法。其中FPGA作为本系统的控制核心和传输桥梁,发挥了极其重要的作用。通过FPGA不仅完成了系统中全部数字电路部分的设计,并且使系统具有了较高的可适应性、可扩展性和可调试性。 在时序数字逻辑设计上,充分利用FPGA中丰富的时序资源,如锁相环PLL、触发器,缓冲器FIFO、计数器等,能够方便的完成对系统输入输出时钟的精确控制以及根据系统需要对各处时序延时进行修正。 在存储器设计上,采用FPGA片内存储器。可根据系统需要随时进行设置,并且能够方便的完成数据格式的合并、拆分以及数据传输率的调整。 在传输接口设计上,采用并行接口和PCI总线接口的两种数据传输模式。通过FPGA中的宏功能模块和IP资源实现了对这两种接口的逻辑控制,可使系统方便的在两种传输模式下进行切换。 在系统工作过程控制上,通过VB程序编写了应用于PC端的上层控制软件。并通过并行接口实现了PC和FPGA之间的交互,从而能够方便的在PC机上完成对系统工作过程的控制和工作模式的选择。 在系统调试方面,充分利用QuartuslI软件中自带的嵌入式逻辑分析仪SignalTaplI,实时准确的验证了在系统整个传输过程中数据的正确性和时序性,并极大的降低了用常规仪器观测FPGA中众多待测引脚的难度。 本文第四章针对FPGA中各功能模块的逻辑设计进行了详细分析,并对每个模块都给出了精确的仿真结果。同时,文中还在其它章节详细介绍了系统的硬件电路设计、并行接口设计、PCI接口设计、PC端控制软件设计以及用于调试过程中的SignalTapⅡ嵌入式逻辑分析仪的使用方法,并且也对系统的仿真结果和测试结果给出了分析及讨论。最后还附上了系统的PCB版图、FPGA逻辑设计图、实物图及注释详细的相关源程序清单。
上传时间: 2013-06-09
上传用户:lh25584
正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)技术作为一种可以有效对抗信号波形间干扰的高速传输技术,引起了广泛关注。它利用许多并行的、传输低速率数据的子载波来实现高速率的通信。它的特点是各子载波相互正交,所以扩频调制后的频谱可以相互重叠,不但减小了子载波问的相互干扰,还大大提高了频谱利用率。由于OFDM的高频谱利用率、易于硬件实现、对抗频率选择性衰落和窄带干扰的能力突出等优点,它成为第四代移动通信的首选技术,是当前移动通信技术研究的热点问题。 本文概括的介绍了OFDM系统的基本概念、基本工作原理和关键技术,重点讨论了如何在FPGA上实现OFDM低中频收发信机。基于这些理论知识,确定了OFDM低中频收发信机系统实现方案,并选择ALTERA公司的Cyclone
上传时间: 2013-06-29
上传用户:水瓶kmoon5
数据采集处理技术是现代信号处理的基础,广泛应用于雷达、声纳、软件无线电、瞬态信号测试等领域。随着信息科学的飞速发展,人们面临的信号处理任务越来越繁重,对数据采集处理系统的要求也越来越高。近年来FPGA由于其设计灵活性、更强的适应性及可重构性,结合SDRAM的高速、大容量、价格优势,在设计高速实时数据采集系统时受到了广泛的关注。 本课题重点研究了基于FPGA与DDR2-SDRAM的高速实时数据采集系统的设计与实现技术,为需要大容量存储器的系统设计提供了新的思路。在深入研究了DDR2-SDRAM器件的基本构造与工作原理的基础上,结合成熟的商业化IP核,提出了基于FPGA与DDR2-SDRAM的高速实时数据采集系统的设计方案,并从总体设计构想到各逻辑细节实现都进行了详细描述。根据DDR2-SDRAM的特点,选择合适的内存调度方案,采用Verilog HDL语言设计实现了该高速实时数据采集系统,并对系统功能进行验证与分析,结果表明本设计完全能够满足系统的性能指标。
上传时间: 2013-06-24
上传用户:lansedeyuntkn
数据采集系统是将传感器输出的模拟信号进行采集,转换成数字信号,然后送入计算机进行处理,并按需要的形式输出处理结果的系统。随着计算机技术和电子信息技术的高速发展,数据采集结合先进的电子技术,已经能利用软件来处理大量测量数据。近年来,对于数据采集系统的要求与日俱增,数据采集系统有着非常良好的应用前景。如今的数据采集技术已渗透到分析仪器、医疗器械、雷达、通讯、等技术领域。 本论文在研究了USB总线技术的基础上,详细介绍了一个基于USB和FPFA技术的数据采集系统,包括硬件设计、固件设计、设备驱动程序设计和主机应用程序设计。在硬件设计部分,本文先介绍了数据采集芯片、FPGA以及USB2.0接口芯片FX2 CY7C68013的性能和特点,然后给出了具体的硬件设计方案;在固件设计部分,本文先介绍了FX2的固件架构,随后详细地介绍了CY7C68013GPIF接口模式的固件设计;在驱动程序开发部分,先引入了WDM驱动程序开发模型,然后介绍了本数据采集系统的USB设备驱动程序的设计;最后结合驱动程序完成了基于虚拟仪器LabVIEW的主机应用程序。
上传时间: 2013-07-16
上传用户:zjt20011220
随着信息量的急剧增长,信息安全日益受到人们重视。移动硬盘的出现使得数据的转移和携带更加方便,但也不可避免的带来了数据安全隐患。只要窃走了移动硬盘,任何想窃取硬盘信息的人便可以轻松得逞,即使设置了类似访问口令这样的逻辑密钥,要想破解也不是件难事。 一个完整的数据加解密系统应该具备安全可靠的密码认证机制和数据加解密算法。本文基于MEMS强链、USB控制器和FPGA设计了一种USB接口的高效数据加解密系统,采用物理认证并用硬件实现AES加密算法。普通IDE硬盘挂接该系统后成为安全性极高的加密USB移动硬盘,其平均数据吞吐率接近普通U盘,达到10MB/s。
上传时间: 2013-06-16
上传用户:1159797854
模电基础之波形发生电路 本教程网上收集的,供大家学习参考. 在学习过程中建议大家边学边用仿真软件对电路进行验证
上传时间: 2013-04-24
上传用户:Jason1990