虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

模拟<b>Ic芯片</b>

  • labview中文教程

    第八章 labview的编程技巧     本章介绍局部变量、全局变量、属性节点和其他一些有助于提高编程技巧的问题,恰当地运用这些技巧可以提高程序的质量。   8.1 局部变量 严格的语法尽管可以保证程序语言的严密性,但有时它也会带来一些使用上的不便。在labview这样的数据流式的语言中,将变量严格地分为控制器(Control)和指示器(Indicator),前者只能向外流出数据,后者只能接受流入的数据,反过来不行。在一般的代码式语言中,情况不是这样的。例如我们有变量a、b和c,只要需要我们可以将a的值赋给b,将b的值赋给c等等。前面所介绍的labview内容中,只有移位积存器即可输入又可输出。另外,一个变量在程序中可能要在多处用到,在图形语言中势必带来过多连线,这也是一件烦人的事。还有其他需要,因此labview引入了局部变量。

    标签: labview 教程

    上传时间: 2013-10-27

    上传用户:xieguodong1234

  • 基于MC9S12XHY系列的汽车控制解决方案

            电子发烧友讯: 飞思卡尔是全球嵌入式处理解决方案、高级汽车电子、消费电子、工业控制和网络市场的领导者。从微处理器和微控制器到传感器、模拟集成电路(IC)和连接,我们的技术为创新奠定基础,构建更加环保、安全、健康和互连的世界   MC9S12XHY系列是飞思卡尔公司的经过优化的,汽车16位微控制器产品系列,具有低成本,高性能的特点。该系列是联接低端16位微控制器(如:MC9S12HY系列),和高性能32位解决方案的桥梁。MC9S12XHY系列定位于低端汽车仪器群集应用,它包括支持CAN和LIN/J2602通信,并传送典型的群集请求,如步进失速检测(SSD)和LCD驱动器的步进电机控制。   MC9S12XHY系列具有16位微控制器的所有优点和效率,同时又保持了飞思卡尔公司现有的8位和16位MCU系列的优势,即低成本、低功耗、EMC和代码尺寸效率等优点。与MC9S12HY系列相同,MC9S12XHY系列可以运行16位宽的访问,而不会出现外设和存储器的等待状态。MC9S12XHY系列为100引脚LQFP和112引脚LQFP封装,旨在最大限度地与100LQFP,MC9S12HY系列兼容。除了每个模块具有I/O端口外,还可提供更多的,具有中断功能的I/O端口,具有从停止或等待模式唤醒功能。    图1 MC9S12XHY系列方框图截图

    标签: MC9 S12 XHY MC

    上传时间: 2014-12-31

    上传用户:66666

  • EDA工程建模及其管理方法研究2

    EDA工程建模及其管理方法研究2 1 随着微电子技术与计算机技术的日益成熟,电子设计自动化(EDA)技术在电子产品与集成电路 (IC)芯片特别是单片集成(SoC)芯片的设计应用中显得越来越重要。EDA技术采用“自上至下”的设计思想,允许设计人员能够从系统功能级或电路功能级进行产品或芯片的设计,有利于产品在系统功能上的综合优化,从而提高了电子设计项目的协作开发效率,降低新产品的研发成本。 近十年来,EDA电路设计技术和工程管理方面的发展主要呈现出两个趋势: (1) 电路的集成水平已经进入了深亚微米的阶段,其复杂程度以每年58%的幅度迅速增加,芯片设计的抽象层次越来越高,而产品的研发时限却不断缩短。 (2) IC芯片的开发过程也日趋复杂。从前期的整体设计、功能分,到具体的逻辑综合、仿真测试,直至后期的电路封装、排版布线,都需要反复的验证和修改,单靠个人力量无法完成。IC芯片的开发已经实行多人分组协作。由此可见,如何提高设计的抽象层次,在较短时间内设计出较高性能的芯片,如何改进EDA工程管理,保证芯片在多组协作设计下的兼容性和稳定性,已经成为当前EDA工程中最受关注的问题。

    标签: EDA 工程建模 管理方法

    上传时间: 2013-10-15

    上传用户:shen007yue

  • C++完美演绎 经典算法 如 /* 头文件:my_Include.h */ #include <stdio.h> /* 展开C语言的内建函数指令 */ #define PI 3.141

    C++完美演绎 经典算法 如 /* 头文件:my_Include.h */ #include <stdio.h> /* 展开C语言的内建函数指令 */ #define PI 3.1415926 /* 宏常量,在稍后章节再详解 */ #define circle(radius) (PI*radius*radius) /* 宏函数,圆的面积 */ /* 将比较数值大小的函数写在自编include文件内 */ int show_big_or_small (int a,int b,int c) { int tmp if (a>b) { tmp = a a = b b = tmp } if (b>c) { tmp = b b = c c = tmp } if (a>b) { tmp = a a = b b = tmp } printf("由小至大排序之后的结果:%d %d %d\n", a, b, c) } 程序执行结果: 由小至大排序之后的结果:1 2 3 可将内建函数的include文件展开在自编的include文件中 圆圈的面积是=201.0619264

    标签: my_Include include define 3.141

    上传时间: 2014-01-17

    上传用户:epson850

  • 数字运算

    数字运算,判断一个数是否接近素数 A Niven number is a number such that the sum of its digits divides itself. For example, 111 is a Niven number because the sum of its digits is 3, which divides 111. We can also specify a number in another base b, and a number in base b is a Niven number if the sum of its digits divides its value. Given b (2 <= b <= 10) and a number in base b, determine whether it is a Niven number or not. Input Each line of input contains the base b, followed by a string of digits representing a positive integer in that base. There are no leading zeroes. The input is terminated by a line consisting of 0 alone. Output For each case, print "yes" on a line if the given number is a Niven number, and "no" otherwise. Sample Input 10 111 2 110 10 123 6 1000 8 2314 0 Sample Output yes yes no yes no

    标签: 数字 运算

    上传时间: 2015-05-21

    上传用户:daguda

  • 源代码用动态规划算法计算序列关系个数 用关系"<"和"="将3个数a

    源代码\用动态规划算法计算序列关系个数 用关系"<"和"="将3个数a,b,c依次序排列时,有13种不同的序列关系: a=b=c,a=b<c,a<b=v,a<b<c,a<c<b a=c<b,b<a=c,b<a<c,b<c<a,b=c<a c<a=b,c<a<b,c<b<a 若要将n个数依序列,设计一个动态规划算法,计算出有多少种不同的序列关系, 要求算法只占用O(n),只耗时O(n*n).

    标签: lt 源代码 动态规划 序列

    上传时间: 2013-12-26

    上传用户:siguazgb

  • c语言版的多项式曲线拟合。 用最小二乘法进行曲线拟合. 用p-1 次多项式进行拟合

    c语言版的多项式曲线拟合。 用最小二乘法进行曲线拟合. 用p-1 次多项式进行拟合,p<= 10 x,y 的第0个域x[0],y[0],没有用,有效数据从x[1],y[1] 开始 nNodeNum,有效数据节点的个数。 b,为输出的多项式系数,b[i] 为b[i-1]次项。b[0],没有用。 b,有10个元素ok。

    标签: 多项式 曲线拟合 c语言 最小二乘法

    上传时间: 2014-01-12

    上传用户:变形金刚

  • crc任意位生成多项式 任意位运算 自适应算法 循环冗余校验码(CRC

    crc任意位生成多项式 任意位运算 自适应算法 循环冗余校验码(CRC,Cyclic Redundancy Code)是采用多项式的 编码方式,这种方法把要发送的数据看成是一个多项式的系数 ,数据为bn-1bn-2…b1b0 (其中为0或1),则其对应的多项式为: bn-1Xn-1+bn-2Xn-2+…+b1X+b0 例如:数据“10010101”可以写为多项式 X7+X4+X2+1。 循环冗余校验CRC 循环冗余校验方法的原理如下: (1) 设要发送的数据对应的多项式为P(x)。 (2) 发送方和接收方约定一个生成多项式G(x),设该生成多项式 的最高次幂为r。 (3) 在数据块的末尾添加r个0,则其相对应的多项式为M(x)=XrP(x) 。(左移r位) (4) 用M(x)除以G(x),获得商Q(x)和余式R(x),则 M(x)=Q(x) ×G(x)+R(x)。 (5) 令T(x)=M(x)+R(x),采用模2运算,T(x)所对应的数据是在原数 据块的末尾加上余式所对应的数据得到的。 (6) 发送T(x)所对应的数据。 (7) 设接收端接收到的数据对应的多项式为T’(x),将T’(x)除以G(x) ,若余式为0,则认为没有错误,否则认为有错。

    标签: crc CRC 多项式 位运算

    上传时间: 2014-11-28

    上传用户:宋桃子

  • crc任意位生成多项式 任意位运算 自适应算法 循环冗余校验码(CRC

    crc任意位生成多项式 任意位运算 自适应算法 循环冗余校验码(CRC,Cyclic Redundancy Code)是采用多项式的 编码方式,这种方法把要发送的数据看成是一个多项式的系数 ,数据为bn-1bn-2…b1b0 (其中为0或1),则其对应的多项式为: bn-1Xn-1+bn-2Xn-2+…+b1X+b0 例如:数据“10010101”可以写为多项式 X7+X4+X2+1。 循环冗余校验CRC 循环冗余校验方法的原理如下: (1) 设要发送的数据对应的多项式为P(x)。 (2) 发送方和接收方约定一个生成多项式G(x),设该生成多项式 的最高次幂为r。 (3) 在数据块的末尾添加r个0,则其相对应的多项式为M(x)=XrP(x) 。(左移r位) (4) 用M(x)除以G(x),获得商Q(x)和余式R(x),则 M(x)=Q(x) ×G(x)+R(x)。 (5) 令T(x)=M(x)+R(x),采用模2运算,T(x)所对应的数据是在原数 据块的末尾加上余式所对应的数据得到的。 (6) 发送T(x)所对应的数据。 (7) 设接收端接收到的数据对应的多项式为T’(x),将T’(x)除以G(x) ,若余式为0,则认为没有错误,否则认为有错

    标签: crc CRC 多项式 位运算

    上传时间: 2014-01-16

    上传用户:hphh

  • We have a group of N items (represented by integers from 1 to N), and we know that there is some tot

    We have a group of N items (represented by integers from 1 to N), and we know that there is some total order defined for these items. You may assume that no two elements will be equal (for all a, b: a<b or b<a). However, it is expensive to compare two items. Your task is to make a number of comparisons, and then output the sorted order. The cost of determining if a < b is given by the bth integer of element a of costs (space delimited), which is the same as the ath integer of element b. Naturally, you will be judged on the total cost of the comparisons you make before outputting the sorted order. If your order is incorrect, you will receive a 0. Otherwise, your score will be opt/cost, where opt is the best cost anyone has achieved and cost is the total cost of the comparisons you make (so your score for a test case will be between 0 and 1). Your score for the problem will simply be the sum of your scores for the individual test cases.

    标签: represented integers group items

    上传时间: 2016-01-17

    上传用户:jeffery