本文是关于赛灵思Artix-7 FPGA 数据手册:直流及开关特性的详细介绍。 文章中也讨论了以下问题: 1.全新 Artix-7 FPGA 系列有哪些主要功能和特性? Artix-7 系列提供了业界最低功耗、最低成本的 FPGA,采用了小型封装,配合Virtex 架构增强技术,能满足小型化产品的批量市场需求,这也正是此前 Spartan 系列 FPGA 所针对的市场领域。与 Spartan-6 FPGA 相比,Artix-7 器件的逻辑密度从 20K 到 355K 不等,不但使速度提升 30%,功耗减半,尺寸减小 50%,而且价格也降了 35%。 2.Artix-7 FPGA 系列支持哪些类型的应用和终端市场? Artix-7 FPGA 系列面向各种低成本、小型化以及低功耗的应用,包括如便携式超声波医疗设备、军用通信系统、高端专业/消费类相机的 DSLR 镜头模块,以及航空视频分配系统等。
上传时间: 2013-11-12
上传用户:songyue1991
现场可编程门阵列(FPGA)与模数转换器(ADC)数字数据输出的接口是一项常见的工程设计挑战。此外,ADC使用多种多样的数字数据样式和标准,使这项挑战更加复杂。本资料将告诉您有关在高速数据转换器实现方案中使用LVDS的应用诀窍和技巧。
上传时间: 2015-01-02
上传用户:athjac
基于FPGA、PCI9054、SDRAM和DDS设计了用于某遥测信号模拟源的专用板卡。PCI9054实现与上位机的数据交互,FPGA实现PCI本地接口转换、数据接收发送控制及DDS芯片的配置。通过WDM驱动程序设计及MFC交互界面设计,最终实现了10~200 Mbit·s-1的LVDS数据接收及10~50 Mbit·s-1任意速率的LVDS数据发送。
上传时间: 2013-12-24
上传用户:zhangchu0807
本应用指南讲述一种实用的 MicroBlaze™ 系统,用于在非易失性 Platform Flash PROM 中存储软件代码、用户数据和配置数据,以简化系统设计和降低成本。另外,本应用指南还介绍一种可移植的硬件设计、一个软件设计以及在实现流程中使用的其他脚本实用工具。 简介许多 FPGA 设计都集成了使用 MicroBlaze 和 PowerPC™ 处理器的软件嵌入式系统,这些设计同时使用外部易失性存储器来执行软件代码。使用易失性存储器的系统还必须包含一个非易失性器件,用来在断电期间存储软件代码。大多数 FPGA 系统都在电路板上使用 Platform FlashPROM (在本文中称作 PROM),用于在上电时加载 FPGA 配置数据。另外,许多应用还可能使用其他非易失性器件(如 SPI Flash、Parallel Flash 或 PIC)来保存 MAC 地址等少量用户数据,因此导致系统电路板上存在大量非易失性器件。
标签: MicroBlaze Platform Flash XAPP
上传时间: 2013-10-15
上传用户:rocwangdp
本练习将通过 PCB 布局,布线,信号完整性仿真分析,修改原理图添加器件等一系列的操作,使您熟悉Mentor ISD2004 系列板级仿真设计工具。
标签: Expedtion Mentor PCB 信号完整性
上传时间: 2013-10-15
上传用户:kiklkook
本内容介绍众多EEPROM数据丢失原因
上传时间: 2013-11-22
上传用户:songnanhua
Protel DXP 是第一个将所有设计工具集于一身的板级设计系统,电子设计者从最初的项目模块规划到最终形成生产数据都可以按照自己的设计方式实现。Protel DXP 运行在优化的设计浏览器平台上,并且具备当今所有先进的设计特点,能够处理各种复杂的 PCB设计过程。Protel DXP 作为一款新推出的电路设计软件,在前版本的基础上增加了许多新的功能。新的可定制设计环境功能包括双显示器支持,可固定、浮动以及弹出面板,强大的过滤及增强的用户界面等。通过设计输入仿真、PCB 绘制编辑、拓扑自动布线、信号完整性分析和设计输出等技术融合,Protel DXP 提供了全面的设计解决方案。 PCB电路板设计的一般原则包括: 电路板的选用、电路板尺寸、元件布局、布线、焊盘、
上传时间: 2013-11-13
上传用户:新手无忧
印刷电路板(PCB)设计解决方案市场和技术领军企业Mentor Graphics(Mentor Graphics)宣布推出HyperLynx® PI(电源完整性)产品,满足业内高端设计者对于高性能电子产品的需求。HyperLynx PI产品不仅提供简单易学、操作便捷,又精确的分析,让团队成员能够设计可行的电源供应系统;同时缩短设计周期,减少原型生成、重复制造,也相应降低产品成本。随着当今各种高性能/高密度/高脚数集成电路的出现,传输系统的设计越来越需要工程师与布局设计人员的紧密合作,以确保能够透过众多PCB电源与接地结构,为IC提供纯净、充足的电力。配合先前推出的HyperLynx信号完整性(SI)分析和确认产品组件,Mentor Graphics目前为用户提供的高性能电子产品设计堪称业内最全面最具实用性的解决方案。“我们拥有非常高端的用户,受到高性能集成电路多重电压等级和电源要求的驱使,需要在一个单一的PCB中设计30余套电力供应结构。”Mentor Graphics副总裁兼系统设计事业部总经理Henry Potts表示。“上述结构的设计需要快速而准 确的直流压降(DC Power Drop)和电源杂讯(Power Noise)分析。拥有了精确的分析信息,电源与接地层结构和解藕电容数(de-coupling capacitor number)以及位置都可以决定,得以避免过于保守的设计和高昂的产品成本。”
上传时间: 2013-10-31
上传用户:ljd123456
摘要: 串行传输技术具有更高的传输速率和更低的设计成本, 已成为业界首选, 被广泛应用于高速通信领域。提出了一种新的高速串行传输接口的设计方案, 改进了Aurora 协议数据帧格式定义的弊端, 并采用高速串行收发器Rocket I/O, 实现数据率为2.5 Gbps的高速串行传输。关键词: 高速串行传输; Rocket I/O; Aurora 协议 为促使FPGA 芯片与串行传输技术更好地结合以满足市场需求, Xilinx 公司适时推出了内嵌高速串行收发器RocketI/O 的Virtex II Pro 系列FPGA 和可升级的小型链路层协议———Aurora 协议。Rocket I/O支持从622 Mbps 至3.125 Gbps的全双工传输速率, 还具有8 B/10 B 编解码、时钟生成及恢复等功能, 可以理想地适用于芯片之间或背板的高速串行数据传输。Aurora 协议是为专有上层协议或行业标准的上层协议提供透明接口的第一款串行互连协议, 可用于高速线性通路之间的点到点串行数据传输, 同时其可扩展的带宽, 为系统设计人员提供了所需要的灵活性[4]。但该协议帧格式的定义存在弊端,会导致系统资源的浪费。本文提出的设计方案可以改进Aurora 协议的固有缺陷,提高系统性能, 实现数据率为2.5 Gbps 的高速串行传输, 具有良好的可行性和广阔的应用前景。
上传时间: 2013-10-13
上传用户:lml1234lml
现代的电子设计和芯片制造技术正在飞速发展,电子产品的复杂度、时钟和总线频率等等都呈快速上升趋势,但系统的电压却不断在减小,所有的这一切加上产品投放市场的时间要求给设计师带来了前所未有的巨大压力。要想保证产品的一次性成功就必须能预见设计中可能出现的各种问题,并及时给出合理的解决方案,对于高速的数字电路来说,最令人头大的莫过于如何确保瞬时跳变的数字信号通过较长的一段传输线,还能完整地被接收,并保证良好的电磁兼容性,这就是目前颇受关注的信号完整性(SI)问题。本章就是围绕信号完整性的问题,让大家对高速电路有个基本的认识,并介绍一些相关的基本概念。 第一章 高速数字电路概述.....................................................................................51.1 何为高速电路...............................................................................................51.2 高速带来的问题及设计流程剖析...............................................................61.3 相关的一些基本概念...................................................................................8第二章 传输线理论...............................................................................................122.1 分布式系统和集总电路.............................................................................122.2 传输线的RLCG 模型和电报方程...............................................................132.3 传输线的特征阻抗.....................................................................................142.3.1 特性阻抗的本质.................................................................................142.3.2 特征阻抗相关计算.............................................................................152.3.3 特性阻抗对信号完整性的影响.........................................................172.4 传输线电报方程及推导.............................................................................182.5 趋肤效应和集束效应.................................................................................232.6 信号的反射.................................................................................................252.6.1 反射机理和电报方程.........................................................................252.6.2 反射导致信号的失真问题.................................................................302.6.2.1 过冲和下冲.....................................................................................302.6.2.2 振荡:.............................................................................................312.6.3 反射的抑制和匹配.............................................................................342.6.3.1 串行匹配.........................................................................................352.6.3.1 并行匹配.........................................................................................362.6.3.3 差分线的匹配.................................................................................392.6.3.4 多负载的匹配.................................................................................41第三章 串扰的分析...............................................................................................423.1 串扰的基本概念.........................................................................................423.2 前向串扰和后向串扰.................................................................................433.3 后向串扰的反射.........................................................................................463.4 后向串扰的饱和.........................................................................................463.5 共模和差模电流对串扰的影响.................................................................483.6 连接器的串扰问题.....................................................................................513.7 串扰的具体计算.........................................................................................543.8 避免串扰的措施.........................................................................................57第四章 EMI 抑制....................................................................................................604.1 EMI/EMC 的基本概念..................................................................................604.2 EMI 的产生..................................................................................................614.2.1 电压瞬变.............................................................................................614.2.2 信号的回流.........................................................................................624.2.3 共模和差摸EMI ..................................................................................634.3 EMI 的控制..................................................................................................654.3.1 屏蔽.....................................................................................................654.3.1.1 电场屏蔽.........................................................................................654.3.1.2 磁场屏蔽.........................................................................................674.3.1.3 电磁场屏蔽.....................................................................................674.3.1.4 电磁屏蔽体和屏蔽效率.................................................................684.3.2 滤波.....................................................................................................714.3.2.1 去耦电容.........................................................................................714.3.2.3 磁性元件.........................................................................................734.3.3 接地.....................................................................................................744.4 PCB 设计中的EMI.......................................................................................754.4.1 传输线RLC 参数和EMI ........................................................................764.4.2 叠层设计抑制EMI ..............................................................................774.4.3 电容和接地过孔对回流的作用.........................................................784.4.4 布局和走线规则.................................................................................79第五章 电源完整性理论基础...............................................................................825.1 电源噪声的起因及危害.............................................................................825.2 电源阻抗设计.............................................................................................855.3 同步开关噪声分析.....................................................................................875.3.1 芯片内部开关噪声.............................................................................885.3.2 芯片外部开关噪声.............................................................................895.3.3 等效电感衡量SSN ..............................................................................905.4 旁路电容的特性和应用.............................................................................925.4.1 电容的频率特性.................................................................................935.4.3 电容的介质和封装影响.....................................................................955.4.3 电容并联特性及反谐振.....................................................................955.4.4 如何选择电容.....................................................................................975.4.5 电容的摆放及Layout ........................................................................99第六章 系统时序.................................................................................................1006.1 普通时序系统...........................................................................................1006.1.1 时序参数的确定...............................................................................1016.1.2 时序约束条件...................................................................................1066.2 源同步时序系统.......................................................................................1086.2.1 源同步系统的基本结构...................................................................1096.2.2 源同步时序要求...............................................................................110第七章 IBIS 模型................................................................................................1137.1 IBIS 模型的由来...................................................................................... 1137.2 IBIS 与SPICE 的比较.............................................................................. 1137.3 IBIS 模型的构成...................................................................................... 1157.4 建立IBIS 模型......................................................................................... 1187.4 使用IBIS 模型......................................................................................... 1197.5 IBIS 相关工具及链接..............................................................................120第八章 高速设计理论在实际中的运用.............................................................1228.1 叠层设计方案...........................................................................................1228.2 过孔对信号传输的影响...........................................................................1278.3 一般布局规则...........................................................................................1298.4 接地技术...................................................................................................1308.5 PCB 走线策略............................................................................................134
标签: 信号完整性
上传时间: 2013-11-01
上传用户:xitai