虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

快速识别

  • 基于ARM的嵌入式多模态生物特征识别系统的设计

    生物特征识别是指通过计算机,利用人体固有的生理特征,如指纹,静脉来进行个人身份鉴别的技术。由于生物特征唯一性和不变性,使得生物特征识别与传统的方法如数字密码和身份证相比,具有更高的安全性和易用性。传统的高性能自动识别系统大多基于PC平台联机应用,然而在实际应用中往往对自动识别系统要求有更高的便携性和易用性,嵌入式技术的快速发展使得实现这样的系统变为了可能。 生物特征识别系统主要由通用模块的控制系统与非通用模块的图像采集设备与识别算法组成。本文针对通用模块与非通用模块接口问题进行研究和设计,实现了一个工作良好的嵌入式平台。 本课题在设计核心板、扩展板、转接板的硬件基础上,移植实时操作系统Linux,编写各种接口与模块的驱动、多路摄像头切换程序,并很好的解决了摄像头采集生物特征时光强控制问题,为很好的采集到清晰图像提供了一个良好稳定的硬件平台。 本课题所设计的嵌入式系统通过测试,做了大量的实验,并将所采集到的手指静脉图像进行讨论分析,具有实用价值。

    标签: ARM 嵌入式 多模 生物特征识别

    上传时间: 2013-06-03

    上传用户:lguotao

  • 基于DSP和ARM的虹膜识别系统设计及实现

    生物识别技术是根据人体自身所固有的生理特征或行为特征来进行身份识别。与传统识别方法相比,生物特征的身份识别技术不存在携带不便、丢失、遗忘等问题。虹膜识别以其精确度高、稳定性好、高独特性、非接触等特点作为一种新兴的生物识别技术使它受到国内外研究人员的重视。 近年虹膜识别理论的发展十分迅速,到目前为止已经有虹膜识别系统投入了商业应用,但大多数此类系统都需要PC作为运行平台而缺乏灵活性。但是嵌入式应用是虹膜识别技术走向实际应用的必然趋势。因此本文提出了一个利用DSP+ARM实现虹膜识别嵌入式应用的一个方案。本系统由6个模块组成:电源管理和监控、虹膜图像采集、虹膜图像处理(DSP)、存储器(SDRAM和FLASH)、人机交互(ARM)以及数据传输部分。 在硬件设计方面介绍了DSP的有关知识和DSP系统硬件设计的过程,讲解了DSP系统各硬件模块的设计与调试。在软件设计方面介绍了利用CCS开发的设计流程和调试经验并且对于如何固化代码使系统硬件自举进行详细阐述,另外还介绍了如何基于WINCE利用ARM系统进行人机界面快速开发。 最后,文章对未来工作方向进行了简要的说明。

    标签: DSP ARM 虹膜识别 系统设计

    上传时间: 2013-04-24

    上传用户:hwl453472107

  • 基于ARM架构的嵌入式人脸识别技术研究

    嵌入式人脸识别系统建立在嵌入式操作系统和嵌入式硬件系统平台之上,具有起点高、概念新、实用性强等特点。它涉及嵌入式硬件设计、嵌入式操作系统应用开发、人脸识别算法等领域的研究;嵌入式人脸识别系统携带方便、安装快捷、机动性强,可广泛应用于各类门禁系统、户外机动布控的实时监测等特殊场合,因此对嵌入式人脸识别的研究工作具有突出的理论意义和广泛的应用前景。 本文是上海市经委创新研究项目《射频识别RFID系统-自动识别和记录人群的身份》(编号:04-11-2)与上海市科委AM基金项目《基于ARM和RFID芯片的自组织安全监控系统的研制》(编号:0512)的主要研究内容之一。论文从构建自动人脸识别系统所需解决的若干关键问题入手,重点探讨了基于嵌入式ARM微处理器的实时人脸检测、关键特征定位、高效的人脸特征描述、鲁棒的人脸识别分类器及自动人脸识别系统设计等问题的研究。论文的主要工作和创新点表现在以下方面: 1实现了结合肤色校验的Haar特征级联分类器嵌入式实时人脸检测,提出了基于人脸约束的人眼Haar特征RSVM级联分类器人眼检测算法和基于遮罩掩磨与椭圆拟合的瞳孔定位算法。 复杂背景中的人脸检测是自动人脸识别系统首先要解决的关键问题,通过对基于肤色模型和基于Haar特征级联强分类器的人脸检测算法的分析研究,综合两个算法的优点,提出了基于肤色模型校验和Haar特征级联强分类器的嵌入式实时人脸检测算法。实验结果表明,该算法不仅解决了复杂背景中的类肤色和类人脸结构问题,而且具有较高的检测率和较快的检测速度,同时对光照、尺度等变化条件下的人脸检测也具有较强的鲁棒性。 人眼检测与瞳孔定位在人脸归一化和有效人脸特征抽取等方面起着非常重要的作用,为了快速检测人眼并精确定位人眼瞳孔中心,论文提出了基于人脸约束的人眼Haar特征RSVM级联分类器人眼检测算法和基于遮罩掩磨与椭圆拟合的瞳孔定位算法,首先利用人眼检测分类器在人脸区域内完成对人眼位置的检测,然后通过对检测到的人眼进行遮罩掩磨、简单图像形态学变换及椭圆拟合实现瞳孔中心的精确定位。测试结果表明该算法只需几百毫秒便能完成人眼检测与瞳孔中心定位整个过程,在保证检测速度较快的同时,还能确保较高的定位精度。 2 针对传统线性判别分析法存在的小样本问题(sss),通过调整Fisher判别准则,实现了自适应线性判别分析算法及相应的人脸识别方法人脸识别中的小样本问题使线性判别分析算法的类内散布矩阵发生严重退化,导致问题无法求解。本文在人脸识别小样本问题的基础上,通过调整Fisher判别准则,利用类间散布矩阵的补空间巧妙地避开类内散布矩阵的求逆运算,通过训练集每类样本的样本数信息自适应改变调整参数,实现了自适应线性判别分析算法,实验结果表明,该算法能有效解决人脸识别中的小样本问题。 3 提出了基于有效人脸区域的Gabor特征抽取算法,有效地解决了Gabor特征抽取维数过高的问题。 Gabor小波对图像的光照、尺度变化具有较强鲁棒性,是一种良好的人脸特征表征方法。但维数过高的Gabor特征造成应用系统的维数灾难,为解决Gabor特征的维数灾难问题,论文第四章提出了基于有效人脸区域的Gabor特征抽取算法,该算法不仅有效地降低了人脸特征向量维数,缩小了人脸特征库的规模,同时降低了核心算法的时间和空间复杂度,而且具有与传统Gabor特征抽取算法同样的鲁棒性。 4 结合有效人脸区域的Gabor特征抽取、自适应线性判别分析算法和基于支持向量机分类策略,提出并实现了基于支持向量机的嵌入式人脸识别和嵌入式人像比对系统支持向量机通过引入核技巧对训练样本进行学习构造最小化错分风险的最优分类超平面,不仅具有强大的非线性和高维处理能力,而且具有更强的泛化能力。本文研究了支持向量机的多类分类策略和训练方法,并结合论文中提出的基于有效人脸区域的Gabor特征提取算法、自适应线性判别分析算法,首次在基于Windows CE操作系统的嵌入式ARM平台中实现了具有较强鲁棒性的嵌入式自动人脸识别系统和嵌入式人像比对系统。 5 提出并初步实现了基于客户机/服务器结构无线网络模型的远距离人脸识别方案为解决嵌入式人脸识别系统在海量人脸库中进行识别的难题,论文提出并初步实现了基于客户机/服务器结构无线网络模型的嵌入式远距离人脸识别方案。 客户机(嵌入式平台)完成对人脸图像的检测、归一化处理和人脸特征提取,然后通过无线网络将提取后的人脸特征数据传输到服务器端,由服务器在海量人脸库中完成人脸识别,并将识别后的结果通过无线网络传输到客户机显示输出,从而实现基于客户机/服务器无线网络模型的嵌入式远距离人脸识别方案。 6 结合我们开发的基于ARM的嵌入式自动人脸识别系统和嵌入式人像比对系统,从系统设计的角度探讨了在嵌入式系统中进行人脸识别应用设计的思路及应该注意的问题虽然嵌入式人脸识别系统的性能很大程度上取决于高效的人脸特征描述和鲁棒的人脸识别核心算法。但是,嵌入式系统的设计思想对嵌入式人脸识别系统的性能影响同样值得重视。本文第六章重点阐述了嵌入式自动人脸识别应用系统的设计思路,并结合我们自主开发的嵌入式自动人脸识别系统和嵌入式人像比对系统从系统设计的角度探讨了嵌入式人脸识别应用系统设计中应该注意的关键技术问题。 结合本文提出的算法我们在PC上完成对人脸识别分类器的训练,然后在嵌入式ARM开发平台上实现了嵌入式自动人脸识别、嵌入式人像比对两个便携式人员身份认证系统,经测试运行效果良好。所提出的人脸识别算法不仅具有一定的理论参考价值,而且对于嵌入式系统应用开发、AFR应用系统开发也具有一定的借鉴意义。

    标签: ARM 架构 嵌入式 人脸识别

    上传时间: 2013-05-18

    上传用户:我们的船长

  • 基于DSPs和FPGA的通信信号调制识别方法研究

    基于小波变换和神经网络理论,对非稳定、大信噪比(SNR)变化的通信信号进行有效的特征提取和分类,实现了通信信号调制方式的分类识别.首先,采用基于多分辨分析框架的Mallat快速算法提取离散细节作为特征采,实验得出db3小波非常适合作为特征提取小波,用小波变换大大压缩了通信信号特征矢量,提取的信号特征矢量64点;然后依据神经网络理论,分别采用BP网络作为分类器对通信信号调制识别分类.从计算机模拟实验结果可知,该方法能很好地完成通信信号调制识别分类任务,使识别正确率得到了明显改善,同时降低了识别分类过程的复杂度,并且为通信信号调制识别的DSP实现提供了快速计算的理论基础.其次,介绍了TMS320LF2407 DSP和FPGA的结构原理,并在此基础上设计了数字信号处理板和制作调试电路板.最后,用汇编和C语言编制A/D程序、串口通信程序和应用程序,并在信号处理板上调试和运行.

    标签: DSPs FPGA 通信信号 调制识别

    上传时间: 2013-07-23

    上传用户:731140412

  • 指纹识别算法的研究及基于FPGA的硬件实现

    随着图像处理和模式识别技术的进步,基于生物特征的识别技术成为蓬勃发展的高技术之一,根据IBG(InternationalBiometricGroup)组织对生物特征市场的统计和预测,该领域的收入的年增长率30-50%,到2008年,全球总收入将达到46.39亿美元。而基于指纹特征的识别技术由于其独特的可靠性,稳定性,方便快捷的特点,恰好符合了市场的需求。目前指纹识别技术是生物识别领域中应用最广泛的识别技术,也是研究与应用的一个热点。 SOPC片上可编程系统和嵌入式系统是当前电子设计领域中最热门的概念。NiosⅡ是Altera公司开发的一种采用流水线技术、单指令流的RISC嵌入式处理器软核,可以将它嵌入FPGA内部,与用户自定义逻辑结合构成一个基于FPGA的片上系统。与嵌入式硬核相比较,嵌入式软核具有更大的灵活性。而FPGA的高速性、恰恰满足了指纹识别系统对速度的要求。 本文对指纹识别技术中各个环节的算法进行了较为深入的研究,结合NiosⅡ嵌入式处理器的特点,对算法进行了合理的选择与优化,形成了一套完整的指纹识别算法,并提出了一种基于FPGA的指纹识别系统硬件设计方案。 论文的内容主要包括以下几个方面: 1、对指纹图像预处理、后处理和匹配算法进行了改进,提高了算法的性能;设计了一种适用于快速匹配的指纹特征数据结构;提出了一套基于特征点匹配的指纹识别算法。实验结果表明该算法速度快、误识率较低、可靠性较高,可以满足实用的要求。 2、本着增加系统集成度、减小系统体积、提高便携性、降低功耗和成本,同时提升系统的性能的原则,使用Altera公司提供的外围设备IP核配合NiosⅡ处理器软核搭建了一个单片嵌入式系统,然后以内嵌NiosⅡ软核的FPGA和FPS200指纹采集器为核心芯片,外配片外RAM和Flash存储器以及小键盘和LCD显示屏等器件,设计了一个便携式指纹识别系统,提出了一套基于FPGA的硬件设计方案。 3、利用NiosⅡ开发板对硬件设计方案进行了初步的验证,实现了指纹采集芯片FPS200与FPGA的接口,并进行了算法的移植。 实验结果表明本文所提出的系统设计方案是可行的。基于FPGA的自动指纹识别系统在速度、功耗、体积、扩展性方面有着独特的优势,具有广阔的发展空间。最后提出了对这一设计继续改进的思路和下一步研究的内容。

    标签: FPGA 指纹识别 法的研究 硬件实现

    上传时间: 2013-07-28

    上传用户:hxy200501

  • 基于DSP和FPGA的自动指纹识别系统硬件设计与实现

    随着计算机与信息技术的发展,生物特征识别技术受到了广泛的关注。指纹识别是生物特征识别中的一项重要内容,一直以来是国内外的研究热点。 嵌入式自动指纹识别是指指纹识别技术在嵌入式系统上的应用。传统的嵌入式自动指纹识别系统多采用单片DSP或MIPS处理器来完成算法,由于DSP或MIPS处理器只能根据程序顺序执行,在指纹匹配过程中只能和整个库中的指纹进行一一匹配,因此这类系统在处理较大指纹库时下匹配时间相当长。为了克服这个缺点,本文构建了浮点DSP和FPGA协同处理构架的硬件平台,充分利用DSP在计算上的精确度和FPGA并行处理的特点,由DSP和FPGA共同处理匹配算法。 本文的主要工作如下: 1.设计了一个硬件系统,包括DSP处理器、FPGA、指纹传感器、人机交互接口和USB1.1接口。同时,还设计了各硬件模块的驱动程序,为应用程序提供控制接口。由于系统中DSP工作频率为300MHz,其中某些器件的工作频率达到了100MHz,因此本文还给出了一些信号完整性分析和PCB设计经验。 2.编写了Verilog程序,在FPGA中实现了9路指纹的并行匹配。由于FPGA本身的局限性,实现原有匹配算法有很大困难。在简化原有匹配算法的基础上本文提出了便于FPGA实现“粗匹配”算法。此外,还设计了用于和DSP通信的接口模块设计。 3.完成了系统应用程序设计。在使用uC/OS-Ⅱ实时操作系统的基础上设计了各系统任务,通过调用驱动程序控制和协调各硬件模块,实现了自动指纹识别功能。为了便于存放指纹特征信息,设计了指纹库数据结构,实现了指纹库添加、删除、编辑的功能。 最终,本系统实现了高效、快速的进行指纹识别,各模块工作稳定。同时,模块化的软硬件设计使本系统便于进行二次开发,快速应用于各种场合。

    标签: FPGA DSP 自动 指纹识别系统

    上传时间: 2013-06-05

    上传用户:guanliya

  • 基于DSP和FPGA的虹膜识别系统

    近年来,随着生物识别技术的兴起,虹膜识别技术被日益关注。由于虹膜识别技术对个体识别具有高度的可靠性,已成为目前生物识别中最有发展前景的识别技术之一。与其它生物识别技术相比,虹膜识别技术具有唯一性、稳定性、非侵犯性、不易伪造性和活体特性等优势。因此,虹膜识别技术具有广阔的使用前景和很好的经济效益,越来越受到国内外有关研究人员的重视。 目前,虹膜识别产品大多都是基于PC平台的,在便携性、稳定性和安全性方面还存在一些问题。为了克服以上的缺点,本文构架了基于DSP和FPGA的嵌入式虹膜识别硬件平台,使虹膜识别技术可应用与更多的领域。 本文的主要工作如下: 1.设计了一个嵌入式硬件系统,包括DSP处理器、FPGA、COMS图像传感器、人机交互接口和通信接口。同时,还编写了各硬件模块的驱动程序。另外,由于系统中DSP工作频率为300Mhz,另外有些器件工作在100Mhz,因此本文还给出了一些信号完整性分析和PCB设计经验。 2.在FPGA设计中,编写Verilog程序,完成了虹膜图像采集模块、乒乓存储器切换模块、图像采样模块以及将采样后的图像显示在TFT彩色液晶上的模块,最终实现了虹膜图像实时显示系统。此外,还设计实现了用于和DSP通信的HPI接口模块。 3.完成了部分系统应用程序设计。在使用DSP/BIOS实时操作系统的基础上设计了各系统任务,通过调用驱动程序控制和协调各硬件模块,实现了虹膜识别功能。 最终,本文实现了系统设计,本设计可以快速有效的进行虹膜识别。同时,由于本系统采用模块化的软硬件设计技术,使系统便于快速应用于各种场合。

    标签: FPGA DSP 虹膜识别

    上传时间: 2013-04-24

    上传用户:qlpqlq

  • 车牌识别系统的硬件设计与实现

    随着交通工具的迅猛发展,智能交通系统(Intelligent TransportationSystems,简称ITS)在交通管理中受到广泛的关注。而在ITS中,车牌识别(LicensePlate Recognition,简称LPR)是其核心技术。车牌识别系统主要由数据采集和车牌识别算法两个部分组成。由于车牌清晰程度、摄像机性能、气候条件等因素的影响,牌照中的字符可能出现不清楚、扭曲、缺损或污迹干扰,这都给识别造成一定难度。因此,在复杂背景中快速准确地进行车牌定位成为车牌识别系统的难点。 本文研究和设计了一种集图象采集,图象识别,图象传输等于一体的实时嵌入式系统。该平台包括硬件系统设计与应用程序开发两个方面,充分利用TI公司的C6000系列DSP强大的并行运算能力、以及FPGA的灵活时序逻辑控制技术,从硬件方面实现系统的高速运行。 本文的主要工作有两部分组成,具体如下: (1) 在硬件设计方面:实现由A/D、电源、FPGA、DSP以及SDRAM和FLASH所组成的车牌识别系统;设计并完成系统的原理图和印制板图;完成电路板调试,以及完成FPGA.在高速图像采集中的veriIog应用程序开发。 (2) 在软件开发方面:完成Philips公司的SAA7113H的配置代码开发,以及DSP底层的部分驱动程序开发。 该系统能够实现25帧每秒的数字视频流图像数据的输出,并由FPGA负责完成一幅720×572数据量的图像采集。DSP负责系统的嵌入式操作,包括系统的控制和车牌识别算法的实现。 目前,嵌入式车牌识别系统硬件平台已经搭建成功,系统软件代码程序也已经开发完成。本系统能够实现高速图像采集、嵌入式操作与车牌识别算法、UART数据通信等功能,具有速度快、稳定性高、体积小、功耗低等特点,为车牌识别算法提供一个较好的验证平台。

    标签: 车牌识别系统 硬件设计

    上传时间: 2013-07-30

    上传用户:gdgzhym

  • 激光光谱探测中快速傅里叶变换

    激光光谱探测是激光侦查、激光告警、污染物检测等领域中采用的重要技术。通过对来袭激光的光谱特征进行识别,可以为光电对抗提供依据。本文在分析和研究现有激光光谱探测技术的基础上,提出了通过非扫描M-Z干涉法来获取激光信号的相干图,并对该图进行快速傅立叶变换,从而实时获得激光光谱的技术。 在研究中,由M-Z干涉具形成的激光干涉条纹经CCD相机转换后以时间序列依次输出电信号,该时间序列的快速傅立叶变换用FPGA实现。论文依据告警系统响应时间和信噪比的要求,确定了探测器阵列的结构类型和有关参数;设计了CCD相机和FPGA的接口电路;编写了数据传输和存储模块。 在快速傅立叶变换的实现上,首先确定了采用基2按时间抽取的方法作为实现算法;应用型号为XC3S400的FPGA芯片,依靠ISE8.1软件开发平台,用硬件语言编写了精度为10位,序列长度为512点的快速傅里叶变换程序,并将所有程序成功下载到FPGA的配置芯片中。 此外,论文还设计了显示、电压转换、FPGA配置电路。最后,对设计的快速傅里叶变换模块进行了测试,将FPGA运算结果与理论计算结果进行了比较,结果表明FPGA计算结果达到应有的精度,运行速度可以满足激光光谱的实时探测要求。

    标签: 激光 光谱 探测 快速傅里叶变换

    上传时间: 2013-08-04

    上传用户:hzy5825468

  • 基于改进AdaBoost算法的飞机特征图像识别

    飞机特征点图像的识别是航空试飞领域中计算机视觉研究的重要课题,在基于图像的视频安全监控、自动识别与智能人机交互方面有着重要的研究价值。其检测算法经过长时间的发展,已经取得了显著的成绩。本文中对Paul Viola提出的基于积分图像和AdaBoost的检测方法进行了深入研究、改进,并针对实际问题成功应用到飞机特征点图像的快速检测中。

    标签: AdaBoost 算法 特征 图像识别

    上传时间: 2013-11-04

    上传用户:日光微澜