本程序是采用MATLAB软件进行回归拟合预测的源代码
上传时间: 2020-09-16
上传用户:
机器学习对于改进产品、过程和研究有着很⼤的潜⼒。但是计算机通常无法解释他们的预测,这是采⽤机器学习的障碍。这本书是关于使机器学习模型及其决策可解释的。 在探索了可解释性的概念之后,你将学习简单的、可解释的模型,例如决策树、决策规则和线性回归。后⾯⼏章重点介绍了解释⿊盒模型的模型⽆关的⼀般⽅法,如特征重要性和累积局部效应,以及⽤ Shapley 值和 LIME 解释单个实例预测。 所有的解释⽅法进⾏了深⼊说明和批判性讨论。它们如何在⿊盒下⼯作的?它们的优缺点是什么? 如何解释它们的输出?本书将使你能够选择并正确应⽤最适合你的机器学习项⽬的解释⽅法。 这本书的重点是表格式数据 (也称为关系数据或结构化数据) 的机器学习模型,较少涉及到计算机 视觉和⾃然语⾔处理任务。建议机器学习从业者、数据科学家、统计学家和任何对使机器学习模型 可解释的⼈阅读本书。
标签: 机器学习
上传时间: 2021-02-08
上传用户:
数学建模32种常规方法1..第一章 线性规划.pdf10.第十章 数据的统计描述和分析.pdf11.第十一章 方差分析.pdf12.第十二章 回归分析.pdf13.第十三章 微分方程建模.pdf14.第十四章 稳定状态模型.pdf15.第十五章 常微分方程的解法.pdf16.第十六章 差分方程模型.pdf17.第十七章 马氏链模型.pdf18.第十八章 变分法模型.pdf19.第十九章 神经网络模型.pdf2.第二章 整数规划.pdf20.第二十章 偏微分方程的数值解.pdf21.第二十一章 目标规划.pdf22.第二十二章 模糊数学模型.pdf23.第二十三章 现代优化算法.pdf24.第二十四章 时间序列模型.pdf25.第二十五章 存贮论.pdf26.第二十六章 经济与金融中的优化问题.pdf27.第二十七章 生产与服务运作管理中的优化问题.pdf28.第二十八章 灰色系统理论及其应用.pdf29.第二十九章 多元分析.pdf3.第三章 非线性规划.pdf30.第三十章 偏最小二乘回归.pdf31、支持向量机(数学建模).pdf32、作业计划(数学建模).pdf4.第四章 动态规划.pdf5.第五章 图与网络.pdf6.第六章 排队论.pdf7.第七章 对策论.pdf8.第八章 层次分析法.pdf9.第九章 插值与拟合.pdf前言.pdf灰色预测公式的理论缺陷及改进.pdf
标签: 数学建模
上传时间: 2021-10-20
上传用户:kingwide
论文-基于红外热成像技术的猪体温检测与关键测温部位识别63页摘要 实现猪体温测量自动化有利于实时监测猪的健康状况、母猪发情和排卵检测等 生理健康状况。本文采用红外热成像仪采集猪的红外热图像,引入化学计量学建模 方法建立体表温度、环境温度与直肠温度间的多元校正模型,同时提出两种关键测 温部位的自动检测方法。主要结论总结如下: (1)建立了母猪体表温度、环境温度与母猪体温之间的一元和多元线性回归模型。研 究发现, 9个身体区域提取的体表温度与直肠温度呈正相关(产O.34~0.68),其中, 基于耳根区域体表温度平均值建立的一元回归方程效果最优,预测集相关系数RP与 均方根误差RMSEP分别为0.66和0.420C。全特征模型相比一元线性回归方程有更 好的预测效果,RP和RMSEP分别为0.76和O.370C。此外,应用特征选择方法LARS. Lasso确定了7个重要特征建立简化模型,其校正集和预测集的R分别为0.80和 0.80,RMSEs分别为0.30和0.350C。 (2)将卷积神经网络应用于生猪主要测温部位(眼睛和耳朵区域)的直接分割。利用 python构建了四种不同结构的卷积神经网络模型FCN一1 6s、FCN.8s、U.Net一3和U. Net.4。对比分析4种卷积神经网络模型的性能,结果表明U-Net.4网络结构的分割 效果最优,平均区域重合度最高为78.75%。然而,当计算设备的计算力不够时,可 以选用U.Net一3模型以达到较好的分割效果。 (3)提出猪只眼睛及耳根区域关键点的识别方法,将猪只主要测温部位的检测问题 转变为主要测温部位的定位问题。设计具有不同深度的卷积神经网络架构A.E,得 出架构E最优。且当Dropout概率设置为0.6时模型效果最好,验证集平均误差和 预测集平均误差分别为1.96%和2.65%。测试集单张猪脸关键点的预测误差小于5% 和10%的比例分别为89.5%和97.4%。模型能够很好的定位猪脸关键点,用于猪只 体温测量。 本文采用红外热像仪测量母猪体表温度,通过化学计量学建模为非接触母猪直 肠温度测量提供了更准确、可靠的方法,同时提出两种关键测温部位的自动检测方 法,有助于实现母猪体温测量自动化,为生猪健康管理提供参考。
标签: 红外热成像技术
上传时间: 2022-02-13
上传用户:jiabin
统计学习基础:数据挖掘、推理与预测介绍了这些领域的一些重要概念。尽管应用的是统计学方法,但强调的是概念,而不是数学。许多例子附以彩图。《统计学习基础:数据挖掘、推理与预测》内容广泛,从有指导的学习(预测)到无指导的学习,应有尽有。包括神经网络、支持向量机、分类树和提升等主题,是同类书籍中介绍得最全面的。计算和信息技术的飞速发展带来了医学、生物学、财经和营销等诸多领域的海量数据。理解这些数据是一种挑战,这导致了统计学领域新工具的发展,并延伸到诸如数据挖掘、机器学习和生物信息学等新领域。许多工具都具有共同的基础,但常常用不同的术语来表达。【内容推荐】《统计学习基础:数据挖掘、推理与预测》试图将学习领域中许多重要的新思想汇集在一起,并且在统计学的框架下解释它们。随着计算机和信息时代的到来,统计问题的规模和复杂性都有了急剧增加。数据存储、组织和检索领域的挑战导致一个新领域“数据挖掘”的产生。数据挖掘是一个多学科交叉领域,涉及数据库技术、机器学习、统计学、神经网络、模式识别、知识库、信息提取、高性能计算等诸多领域,并在工业、商务、财经、通信、医疗卫生、生物工程、科学等众多行业得到了广泛的应用。【作者简介】Trevor Hastie,Robert Tibshirani和Jerome Friedman都是斯坦福大学统计学教授,并在这个领域做出了杰出的贡献。Hastie和Tibshirani提出了广义和加法模型,并出版专著“Generalized Additive Models”。Hastie的主要研究领域为:非参数回归和分类、统计计算以及生物信息学、医学和工业的特殊数据挖掘问题。他提出主曲线和主曲面的概念,并用S-PLUS编写了大量统计建模软件。Tibshirani的主要研究领域为:应用统计学、生物统计学和机器学习。他提出了套索的概念,还是“An Introduction to the Bootstrap”一书的作者之一。Friedman是CART、MARS和投影寻踪等数据挖掘工具的发明人之一。他不仅是位统计学家,而且是物理学家和计算机科学家,先后在物理学、计算机科学和统计学的一流杂志上表发论文80余篇。
标签: 统计
上传时间: 2022-05-04
上传用户:
请波抑制在提升电能质量以及保障供用电设备的安全稳定运行等方面有若关键性作用;无功功率不仅对于供电侧来说十分重要,而且在负载的正常运行过程中扮演着不可替代的角色。伴随功率半导体开关器件的飞速发展,大量的非线性负载涌现在电力系统中,由此带来的谐波污染和无功功率问题愈发严峻。在上述背景下,一方面可以对谐波进行抑制,另一方面又可以补偿无功功率的有源电力滤波器则受到了国内外学者们的青睐。有源电力滤波器的主电路拓扑结构是系统中最基础的部分,本文将由此出发,分别介绍各主电路的结构特征以及基本原理。简单叙述了有源电力滤液器常用的语波检测方法,比较其各白的优劣,其中着重突出本文所用到的基于瞬时无功功率的改进的ip-i法。针对传统电流跟踪控制策略对谐波信号跟踪动态效果差、控制目标单一的问题,在三相四线制不对称负载系统中,提出了一种多目标优化模型预测电流控制策略。首先建立四桥臂有源电力滤波器基于ap坐标系的离散化数学模型.以此来实现自然解耦控制:其次对预测电流进行两步预测,实现对数字处理延时效应的补偿,设置电流跟踪偏差和开关频率为目标函数,量化控制目标,预先评估各开关状态的控制效果,根据评估结果决定变流器的开关状态,去了PWM调制环节;再次讨论了采样频率以及加权系数这两个系统变量的取值对开关频率和电流畸变率所造成的影响;文章的最后,为了验证所提方法的有效性,在Matlab/Simulink仿真环境下进行实验,结果证实所提策略谐波电流跟踪性能良好
上传时间: 2022-06-22
上传用户:slq1234567890
数字电路解题技巧50法及题解300例
上传时间: 2013-04-15
上传用户:eeworm
电磁场计算中的时域有限差分法(王常清) pdf版
上传时间: 2013-04-15
上传用户:eeworm
电磁场积分方程法 pdf版
上传时间: 2013-05-20
上传用户:eeworm
计算电磁场的矩量法 pdf版
上传时间: 2013-07-26
上传用户:eeworm