虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

低压电容器

低压电容器通常指额定电压在400V~6kV之间的电力电容器。低压电容器作用是改善功率因素从而减小用电费用,并能够减轻设备的负荷,增加其使用寿命,减少供电端到用电端之间的线路损失。
  • 影响电力系统电压稳定性的因素分析

    本文主要介绍在电力系统中, 对电压稳定性的影响因素。首先分析了电压稳定性遭受破坏的机理, 按照系统中影响电压稳定性的设备( 同步电机、变压器、新型无功补偿器、并联电容器以及负荷等) 分别进行了分析。

    标签: 电力系统 电压稳定性

    上传时间: 2013-11-09

    上传用户:lmq0059

  • 同步整流技术简单介绍

    同步整流技术简单介绍大家都知道,对于开关电源,在次级必然要有一个整流输出的过程。作为整流电路的主要元件,通常用的是整流二极管(利用它的单向导电特性),它可以理解为一种被动式器件:只要有足够的正向电压它就开通,而不需要另外的控制电路。但其导通压降较高,快恢复二极管(FRD)或超快恢复二极管(SRD)可达1.0~1.2V,即使采用低压降的肖特基二极管(SBD),也会产生大约0.6V的压降。这个压降完全是做的无用功,并且整流二极管是一种固定压降的器件,举个例子:如有一个管子压降为0.7V,其整流为12V时它的前端要等效12.7V电压,损耗占0.7/12.7≈5.5%.而当其为3.3V整流时,损耗为0.7/4(3.3+0.7)≈17.5%。可见此类器件在低压大电流的工作环境下其损耗是何等地惊人。这就导致电源效率降低,损耗产生的热能导致整流管进而开关电源的温度上升、机箱温度上升--------有时系统运行不稳定、电脑硬件使用寿命急剧缩短都是拜这个高温所赐。随着电脑硬件技术的飞速发展,如GeForce 8800GTX显卡,其12V峰值电流为16.2A。所以必须制造能提供更大输出电流(如多核F1,四路12V,每路16A;3.3V和5V输出电流各高达24A)的电源转换器。而当前世界的能源紧张问题的凸现,为广大用户提供更高转换效率(如多核R80,完全符合80PLUS标准)的电源转换器就是我们整个开关电源行业的不可回避的社会责任了。如何解决这些问题?寻找更好的整流方式、整流器件。同步整流技术和通态电阻(几毫欧到十几毫欧)极低的专用功率MOSFET就是在这个时刻走上开关电源技术发展的历史舞台了!作为取代整流二极管以降低整流损耗的一种新器件,功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。因为用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。它可以理解为一种主动式器件,必须要在其控制极(栅极)有一定电压才能允许电流通过,这种复杂的控制要求得到的回报就是极小的电流损耗。在实际应用中,一般在通过20-30A电流时才有0.2-0.3V的压降损耗。因为其压降等于电流与通态电阻的乘积,故小电流时,其压降和恒定压降的肖特基不同,电流越小压降越低。这个特性对于改善轻载效率(20%)尤为有效。这在80PLUS产品上已成为一种基本的解决方案了。对于以上提到的两种整流方案,我们可以通过灌溉农田来理解:肖特基整流管可以看成一条建在泥土上没有铺水泥的灌溉用的水道,从源头下来的水源在中途渗漏了很多,十方水可能只有七、八方到了农田里面。而同步整流技术就如同一条镶嵌了光滑瓷砖的引水通道,除了一点点被太阳晒掉的损失外,十方水能有9.5方以上的水真正用于浇灌那些我们日日赖以生存的粮食。我们的多核F1,多核R80,其3.3V整流电路采用了通态电阻仅为0.004欧的功率MOSFET,在通过24A峰值电流时压降仅为20*0.004=0.08V。如一般PC正常工作时的3.3V电流为10A,则其压降损耗仅为10*0.004=0.04V,损耗比例为0.04/4=1%,比之于传统肖特基加磁放大整流技术17.5%的损耗,其技术的进步已不仅仅是一个量的变化,而可以说是有了一个质的飞跃了。也可以说,我们为用户修建了一条严丝合缝的灌溉电脑配件的供电渠道。

    标签: 同步整流

    上传时间: 2013-10-27

    上传用户:杏帘在望

  • 矿区供电

    淮南煤矿区地跨淮河两岸,辖有大通、田家庵、谢家集、八公山、潘集5个行政区,人口106.30万,是国家大型煤炭生产基地之一。淮南供电始于民国19年(1930年)4月,当时仅有1台7.5千瓦直流发电机发电,供九龙岗矿场地面照明。民国25年,九龙岗东西两矿,有1路1.70公里的2.3千伏送电线相联,各装1台10千伏安变压器。民国27年后,日本侵略军占领淮南,在大通、九龙岗两区建矿采煤,掠夺煤炭资源,民国32年,建成下窑(田家庵)发电所,架设经大通至九龙岗22千伏同杆(铁塔)双固路输电线,和大通、九龙岗2个变电所,以3.3千伏向矿井配电。抗日战争胜利后,民国36年4月,淮南路矿公司架设田家庵至八公山22千伏输电线。至此22千伏线路全长37.10公里,变电所4个,降压变压器11台,总容量7500千伏安。民国37年售电量1189.60万千瓦·时,主要供煤矿用电。建国后,先后对谢一、谢二、谢三矿和李咀孜矿进行勘探建井。1954年,原22千伏线路和变电所升压为35千伏供电。1958年起以110千伏电压供电。至1972年,发展成为工商业区和政治文化中心的东部地区,也升压为110千伏供电。1975年淮河北岸潘集矿区开始建设,负荷中心北移,由田家庵电厂出线跨越淮河至潘集矿区的110千伏输变电工程同时投运。1978~1982年间,淮南矿区又先后建成田家庵电厂经西山变电所至淮河北岸芦集变电所的220千伏系统。1985年,田家庵、洛河电厂装机总容量达90.10万千瓦,市内供电网相应加强,全矿区已形成主要由田家庵电厂110千伏母线和220千伏西山变电所、芦集变电所3点分片供电,以220千伏和110千伏高压配电网联合供电的格局。同时,一些大型厂矿都有自备35千伏及以上变电所,并向附近中小企业转供电,形成东部田家庵、大通两区,中部望峰岗地区,西部谢集、八公山两区,淮河北岸潘集区组成的4个公用中低压配电网络。1985年,全市最高负荷19.55万千瓦,供电量16亿多千瓦·时。其中,煤炭工业最高负荷9.34万千瓦,用电量4.99亿千瓦·时,占全市用电量的三分之一。

    标签: 矿区供电

    上传时间: 2013-10-12

    上传用户:fandeshun

  • 电容降压式电源

      电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。在实际应用时常常采用的是图2的所示的电路。当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。   整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合。

    标签: 电容 降压式电源

    上传时间: 2013-10-23

    上传用户:牛津鞋

  • 判别三相变压器联结组别的简易方法

    摘要要判别三相变压器联结组别, 只需记住个标准的联结组 关键词三相变压器联结组判别 根据变压器、次绕组线电动势的相位关系,把变压器的绕组分成不同的组合, 称为绕组的联结组。为了区分不同的联结组, 采用时钟表示法, 即把时钟的长针表示为高压侧的线电动势, 把时钟的短针表示为低压侧的线电动势。

    标签: 判别 三相变压器 联结组别

    上传时间: 2014-04-02

    上传用户:heart520beat

  • MCS-51系列单片机实用接口技术

    本书全面、系统地介绍了MCS-51系列单片机应用系统的各种实用接口技术及其配置。   内容包括:MCS-51系列单片机组成原理:应用系统扩展、开发与调试;键盘输入接口的设计及调试;打印机和显示器接口及设计实例;模拟输入通道接口技术;A/D、D/A、接口技术及在控制系统中的应用设计;V/F转换器接口技术、串行通讯接口技术以及其它与应用系统设计有关的实用技术等。   本书是为满足广大科技工作者从事单片机应用系统软件、硬件设计的需要而编写的,具有内容新颖、实用、全面的特色。所有的接口设计都包括详细的设计步骤、硬件线路图及故障分析,并附有测试程序清单。书中大部分接口软、硬件设计实例都是作者多年来从事单片机应用和开发工作的经验总结,实用性和工程性较强,尤其是对应用系统中必备的键盘、显示器、打印机、A/D、D/A通讯接口设计、模拟信号处理及开发系统应用举例甚多,目的是让将要开始和正在从事单片机应用开发的科研人员根据自己的实际需要来选择应用,一书在手即可基本完成单片机应用系统的开发工作。   本书主要面向从事单片机应用开发工作的广大工程技术人员,也可作为大专院校有关专业的教材或教学参考书。 第一章MCS-51系列单片机组成原理   1.1概述   1.1.1单片机主流产品系列   1.1.2单片机芯片技术的发展概况   1.1.3单片机的应用领域   1.2MCS-51单片机硬件结构   1.2.1MCS-51单片机硬件结构的特点   1.2.2MCS-51单片机的引脚描述及片外总线结构   1.2.3MCS-51片内总体结构   1.2.4MCS-51单片机中央处理器及其振荡器、时钟电路和CPU时序   1.2.5MCS-51单片机的复位状态及几种复位电路设计   1.2.6存储器、特殊功能寄存器及位地址空间   1.2.7输入/输出(I/O)口   1.3MCS-51单片机指令系统分析   1.3.1指令系统的寻址方式   1.3.2指令系统的使用要点   1.3.3指令系统分类总结   1.4串行接口与定时/计数器   1.4.1串行接口简介   1.4.2定时器/计数器的结构   1.4.3定时器/计数器的四种工作模式   1.4.4定时器/计数器对输入信号的要求   1.4.5定时器/计数器的编程和应用   1.5中断系统   1.5.1中断请求源   1.5.2中断控制   1.5.3中断的响应过程   1.5.4外部中断的响应时间   1.5.5外部中断方式的选择   第二章MCS-51单片机系统扩展   2.1概述   2.2程序存贮器的扩展   2.2.1外部程序存贮器的扩展原理及时序   2.2.2地址锁存器   2.2.3EPROM扩展电路   2.2.4EEPROM扩展电路   2.3外部数据存贮器的扩展   2.3.1外部数据存贮器的扩展方法及时序   2.3.2静态RAM扩展   2.3.3动态RAM扩展   2.4外部I/O口的扩展   2.4.1I/O口扩展概述   2.4.2I/O口地址译码技术   2.4.38255A可编程并行I/O扩展接口   2.4.48155/8156可编程并行I/O扩展接口   2.4.58243并行I/O扩展接口   2.4.6用TTL芯片扩展I/O接口   2.4.7用串行口扩展I/O接口   2.4.8中断系统扩展   第三章MCS-51单片机应用系统的开发   3.1单片机应用系统的设计   3.1.1设计前的准备工作   3.1.2应用系统的硬件设计   3.1.3应用系统的软件设计   3.1.4应用系统的抗干扰设计   3.2单片机应用系统的开发   3.2.1仿真系统的功能   3.2.2开发手段的选择   3.2.3应用系统的开发过程   3.3SICE—IV型单片机仿真器   3.3.1SICE-IV仿真器系统结构   3.3.2SICE-IV的仿真特性和软件功能   3.3.3SICE-IV与主机和终端的连接使用方法   3.4KHK-ICE-51单片机仿真开发系统   3.4.1KHK—ICE-51仿真器系统结构   3.4.2仿真器系统功能特点   3.4.3KHK-ICE-51仿真系统的安装及其使用   3.5单片机应用系统的调试   3.5.1应用系统联机前的静态调试   3.5.2外部数据存储器RAM的测试   3.5.3程序存储器的调试   3.5.4输出功能模块调试   3.5.5可编程I/O接口芯片的调试   3.5.6外部中断和定时器中断的调试   3.6用户程序的编辑、汇编、调试、固化及运行   3.6.1源程序的编辑   3.6.2源程序的汇编   3.6.3用户程序的调试   3.6.4用户程序的固化   3.6.5用户程序的运行   第四章键盘及其接口技术   4.1键盘输入应解决的问题   4.1.1键盘输入的特点   4.1.2按键的确认   4.1.3消除按键抖动的措施   4.2独立式按键接口设计   4.3矩阵式键盘接口设计   4.3.1矩阵键盘工作原理   4.3.2按键的识别方法   4.3.3键盘的编码   4.3.4键盘工作方式   4.3.5矩阵键盘接口实例及编程要点   4.3.6双功能及多功能键设计   4.3.7键盘处理中的特殊问题一重键和连击   4.48279键盘、显示器接口芯片及应用   4.4.18279的组成和基本工作原理   4.4.28279管脚、引线及功能说明   4.4.38279编程   4.4.48279键盘接口实例   4.5功能开关及拨码盘接口设计   第五章显示器接口设计   5.1LED显示器   5.1.1LED段显示器结构与原理   5.1.2LED显示器及显示方式   5.1.3LED显示器接口实例   5.1.4LED显示器驱动技术   5.2单片机应用系统中典型键盘、显示接口技术   5.2.1用8255和串行口扩展的键盘、显示器电路   5.2.2由锁存器组成的键盘、显示器接口电路   5.2.3由8155构成的键盘、显示器接口电路   5.2.4用8279组成的显示器实例   5.3液晶显示LCD   5.3.1LCD的基本结构及工作原理   5.3.2LCD的驱动方式   5.3.34位LCD静态驱动芯片ICM7211系列简介   5.3.4点阵式液晶显示控制器HD61830介绍   5.3.5点阵式液晶显示模块介绍   5.4荧光管显示   5.5LED大屏幕显示器   第六章打印机接口设计   6.1打印机简介   6.1.1打印机的基本知识   6.1.2打印机的电路构成   6.1.3打印机的接口信号   6.1.4打印机的打印命令   6.2TPμP-40A微打与单片机接口设计   6.2.1TPμP系列微型打印机简介   6.2.2TPμP-40A打印功能及接口信号   6.2.3TPμP-40A工作方式及打印命令   6.2.48031与TPμP-40A的接口   6.2.5打印编程实例   6.3XLF微型打印机与单片机接口设计   6.3.1XLF微打简介   6.3.2XLF微打接口信号及与8031接口设计   6.3.3XLF微打控制命令   6.3.4打印机编程   6.4标准宽行打印机与8031接口设计   6.4.1TH3070接口引脚信号及时序   6.4.2与8031的简单接口   6.4.3通过打印机适配器完成8031与打印机的接口   6.4.4对打印机的编程   第七章模拟输入通道接口技术   7.1传感器   7.1.1传感器的分类   7.1.2温度传感器   7.1.3光电传感器   7.1.4湿度传感器   7.1.5其他传感器   7.2模拟信号放大技术   7.2.1基本放大器电路   7.2.2集成运算放大器   7.2.3常用运算放大器及应用举例   7.2.4测量放大器   7.2.5程控增益放大器   7.2.6隔离放大器   7.3多通道模拟信号输入技术   7.3.1多路开关   7.3.2常用多路开关   7.3.3模拟多路开关   7.3.4常用模拟多路开关   7.3.5多路模拟开关应用举例   7.3.6多路开关的选用   7.4采样/保持电路设计   7.4.1采样/保持原理   7.4.2集成采样/保持器   7.4.3常用集成采样/保持器   7.4.4采样保持器的应用举例   7.5有源滤波器的设计   7.5.1滤波器分类   7.5.2有源滤波器的设计   7.5.3常用有源滤波器设计举例   7.5.4集成有源滤波器   第八章D/A转换器与MCS-51单片机的接口设计与实践   8.1D/A转换器的基本原理及主要技术指标   8.1.1D/A转换器的基本原理与分类   8.1.2D/A转换器的主要技术指标   8.2D/A转换器件选择指南   8.2.1集成D/A转换芯片介绍   8.2.2D/A转换器的选择要点及选择指南表   8.2.3D/A转换器接口设计的几点实用技术   8.38位D/A转换器DAC080/0831/0832与MCS-51单片机的接口设计   8.3.1DAC0830/0831/0832的应用特性与引脚功能   8.3.2DAC0830/0831/0832与8031单片机的接口设计   8.3.3DAC0830/0831/0832的调试说明   8.3.4DAC0830/0831/0832应用举例   8.48位D/A转换器AD558与MCS-51单片机的接口设计   8.4.1AD558的应用特性与引脚功能   8.4.2AD558与8031单片机的接口及调试说明   8.4.38位D/A转换器DAC0800系列与8031单片机的接口   8.510位D/A转换器AD7522与MCS-51的硬件接口设计   8.5.1AD7522的应用特性及引脚功能   8.5.2AD7522与8031单片机的接口设计   8.610位D/A转换器AD7520/7530/7533与MCS一51单片机的接口设计   8.6.1AD7520/7530/7533的应用特性与引脚功能   8.6.2AD7520系列与8031单片机的接口   8.6.3DAC1020/DAC1220/AD7521系列D/A转换器接口设计   8.712位D/A转换器DAC1208/1209/1210与MCS-51单片机的接口设计   8.7.1DAC1208/1209/1210的内部结构与引脚功能   8.7.2DAC1208/1209/1210与8031单片机的接口设计   8.7.312位D/A转换器DAC1230/1231/1232的应用设计说明   8.7.412位D/A转换器AD7542与8031单片机的接口设计   8.812位串行DAC-AD7543与MCS-51单片机的接口设计   8.8.1AD7543的应用特性与引脚功能   8.8.2AD7543与8031单片机的接口设计   8.914位D/A转换器AD75335与MCS-51单片机的接口设计   8.9.1AD8635的内部结构与引脚功能   8.9.2AD7535与8031单片机的接口设计   8.1016位D/A转换器AD1147/1148与MCS-51单片机的接口设计   8.10.1AD1147/AD1148的内部结构及引脚功能   8.10.2AD1147/AD1148与8031单片机的接口设计   8.10.3AD1147/AD1148接口电路的应用调试说明   8.10.416位D/A转换器AD1145与8031单片机的接口设计   第九章A/D转换器与MCS-51单片机的接口设计与实践   9.1A/D转换器的基本原理及主要技术指标   9.1.1A/D转换器的基本原理与分类   9.1.2A/D转换器的主要技术指标   9.2面对课题如何选择A/D转换器件   9.2.1常用A/D转换器简介   9.2.2A/D转换器的选择要点及应用设计的几点实用技术   9.38位D/A转换器ADC0801/0802/0803/0804/0805与MCS-51单片机的接口设计   9.3.1ADC0801~ADC0805芯片的引脚功能及应用特性   9.3.2ADC0801~ADC0805与8031单片机的接口设计   9.48路8位A/D转换器ADC0808/0809与MCS一51单片机的接口设计   9.4.1ADC0808/0809的内部结构及引脚功能   9.4.2ADC0808/0809与8031单片机的接口设计   9.4.3接口电路设计中的几点注意事项   9.4.416路8位A/D转换器ADC0816/0817与MCS-51单片机的接口设计   9.510位A/D转换器AD571与MCS-51单片机的接口设计   9.5.1AD571芯片的引脚功能及应用特性   9.5.2AD571与8031单片机的接口   9.5.38位A/D转换器AD570与8031单片机的硬件接口   9.612位A/D转换器ADC1210/1211与MCS-51单片机的接口设计   9.6.1ADC1210/1211的引脚功能与应用特性   9.6.2ADC1210/1211与8031单片机的硬件接口   9.6.3硬件接口电路的设计要点及几点说明   9.712位A/D转换器AD574A/1374/1674A与MCS-51单片机的接口设计   9.7.1AD574A的内部结构与引脚功能   9.7.2AD574A的应用特性及校准   9.7.3AD574A与8031单片机的硬件接口设计   9.7.4AD574A的应用调试说明   9.7.5AD674A/AD1674与8031单片机的接口设计   9.8高速12位A/D转换器AD578/AD678/AD1678与MCS—51单片机的接口设计   9.8.1AD578的应用特性与引脚功能   9.8.2AD578高速A/D转换器与8031单片机的接口设计   9.8.3AD578高速A/D转换器的应用调试说明   9.8.4AD678/AD1678采样A/D转换器与8031单片机的接口设计   9.914位A/D转换器AD679/1679与MCS-51单片机的接口设计   9.9.1AD679/AD1679的应用特性及引脚功能   9.9.2AD679/1679与8031单片机的接口设计   9.9.3AD679/1679的调试说明   9.1016位ADC-ADC1143与MCS-51单片机的接口设计   9.10.1ADC1143的应用特性及引脚功能   9.10.2ADC1143与8031单片机的接口设计   9.113位半积分A/D转换器5G14433与MCS-51单片机的接口设计   9.11.15G14433的内部结构及引脚功能   9.11.25G14433的外部电路连接与元件参数选择   9.11.35G14433与8031单片机的接口设计   9.11.45G14433的应用举例   9.124位半积分A/D转换器ICL7135与MCS—51单片机的接口设计   9.12.1ICL7135的内部结构及芯片引脚功能   9.12.2ICL7135的外部电路连接与元件参数选择   9.12.3ICL7135与8031单片机的硬件接口设计   9.124ICL7135的应用举例   9.1312位双积分A/D转换器ICL7109与MCS—51单片机的接口设计   9.13.1ICL7109的内部结构与芯片引脚功能   9.13.2ICL7109的外部电路连接与元件参数选择   9.13.3ICL7109与8031单片机的硬件接口设计   9.1416位积分型ADC一ICL7104与MCS-51单片机的接口设计   9.14.1ICL7104的主要应用特性及引脚功能   9.14.2ICL7104与8031单片机的接口设计   9.14.3其它积分型A/D转换器简介   第十章V/F转换器接口技术   10.1V/F转换的特点及应用环境   10.2V/F转换原理及用V/F转换器实现A/D转换的方法   10.2.1V/F转换原理   10.2.2用V/F转换器实现A/D转换的方法   10.3常用V/F转换器简介   10.3.1VFC32   10.3.2LMX31系列V/F转换器   10.3.3AD650   10.3.4AD651   10.4V/F转换应用系统中的通道结构   10.5LM331应用实例   10.5.1线路原理   10.5.2软件设计   10.6AD650应用实例   10.6.1AD650外围电路设计   10.6.2定时/计数器(8253—5简介)   10.6.3线路原理   10.6.4软件设计   第十一章串行通讯接口技术   11.1串行通讯基础   11.1.1异步通讯和同步通讯   11.1.2波特率和接收/发送时钟   11.1.3单工、半双工、全双工通讯方式   11.14信号的调制与解调   11.1.5通讯数据的差错检测和校正   11.1.6串行通讯接口电路UART、USRT和USART   11.2串行通讯总线标准及其接口   11.2.1串行通讯接口   11.2.2RS-232C接口   11.2.3RS-449、RS-422、RS-423及RS485   11.2.420mA电流环路串行接口   11.3MCS-51单片机串行接口   11.3.1串行口的结构   11.3.2串行接口的工作方式   11.3.3串行通讯中波特率设置   11.4MCS-51单片机串行接口通讯技术   11.4.1单片机双机通讯技术   11.4.2单片机多机通讯技术   11.5IBMPC系列机与单片机的通讯技术   11.5.1异步通讯适配器   11.5.2IBM-PC机与8031双机通讯技术   11.5.3IBM—PC机与8031多机通讯技术   11.6MCS-51单片机串行接口的扩展   11.6.1Intel8251A可编程通讯接口   11.6.2扩展多路串行口的硬件设计   11.6.3通讯软件设计   第十二章应用系统设计中的实用技术   12.1MCS-51单片机低功耗系统设计   12.1.1CHMOS型单片机80C31/80C51/87C51的组成与使用要点   12.1.2CHMOS型单片机的空闲、掉电工作方式   12.1.3CHMOS型单片机的I/O接口及应用系统实例   12.1.4HMOS型单片机的节电运行方式   12.2逻辑电平接口技术   12.2.1集电极开路门输出接口   12.2.2TTL、HTL、ECL、CMOS电平转换接口   12.3电压/电流转换   12.3.1电压/0~10mA转换   12.3.2电压1~5V/4~20mA转换   12.3.30~10mA/0~5V转换   12.344~20mA/0~5V转换   12.3.5集成V/I转换电路   12.4开关量输出接口技术   12.4.1输出接口隔离技术   12.4.2低压开关量信号输出技术   12.4.3继电器输出接口技术   12.4.4可控硅(晶闸管)输出接口技术   12.4.5固态继电器输出接口   12.4.6集成功率电子开关输出接口   12.5集成稳压电路   12.5.1电源隔离技术   12.5.2三端集成稳压器   12.5.3高精度电压基准   12.6量程自动转换技术   12.6.1自动转换量程的硬件电路   12.6.2自动转换量程的软件设计   附录AMCS-51单片机指令速查表   附录B常用EPROM固化电压参考表   参考文献

    标签: MCS 51 单片机实用 接口技术

    上传时间: 2013-10-15

    上传用户:himbly

  • 法拉电容 组合型5.5V系列

    前公司产品涉及到消费电子类、工业用电器、光电、太阳能、航天、运输、交通能源、军工等广泛领域。 法拉电容、超级电容器 特点:小体积、大容量、优良的电压保持特性。快速充电应用,几秒钟充电,几分钟放电、小电流,长时间持续放电在需要更高效更可靠电源的新技术领域中逐渐崭露头角    作为CMOS、RAM、VCR、收音机、电视、电话、智能仪器仪表、电子钟表、LED手电筒、LED灯饰照明、智能家电、时钟芯片、静态随机存贮器、数据传输系统、数码相机、掌上电脑、电子门锁、智能电表、远程抄表系统、程控交换机、税控机、无绳电话、玩具电动机、语音IC、LED发光器等理想的后备电源。

    标签: 5.5 法拉电容 组合

    上传时间: 2013-11-17

    上传用户:璇珠官人

  • 8位OTP单片机芯片MC10P23XXY管脚与三星9454完

    主要特点管脚完全与三星9454兼容8位CISC型内核(MC05)4K byte OTP ROM208 byte RAM3组IO口(最多可支持17个通用IO口和1个输入口)1个PWM输出1个8位基本定时器1个8位带比较输出的定时器1个10位ADC(9路输入)2个外中断、1个定时器中断、1个PWM中断看门狗复位功能3V低压复位可选晶振/RC振荡晶振400K-8MHzRC振荡有3.2MHz(@5V,typ.)、8MHz(@5V,typ.)、外接电阻电容3种可选

    标签: 9454 10P OTP P23

    上传时间: 2013-11-05

    上传用户:Jerry_Chow

  • 8位OTP单片机芯片BL22P64

    概述 BL22P64可以作为许多中高档小家电(如电磁炉、微波炉、豆浆机等)的控制芯片,这一类小家电通常都需要灵活的、可编程的控制方式,并需要AD、PWM等资源,同时满足抗电磁干扰(EMC)4KV的要求。 主要特点 ●8位CISC型内核(兼容MotorolaHC05)●4KbyteOTPROM●208byteRAM●3组IO口(最多18个IOPIN)●1个PWM输出●1个8位基本定时器●1个8位带MATCH输出的定时器●1个10位ADC(9路输入)●2个外中断、1个定时器中断、1个PWM中断●WATCHDOG●3V低压复位●可选晶振/RC振荡晶振400K-4MHzRC振荡有3.2MHz(@5V,typ.)、0.5MHz(@5V,typ.)、外接电阻3种可选●工作电压2.7-5.5V●工作温度-40-85℃●封装形式:SOP20/DIP20/SOP16

    标签: 22P OTP P64 22

    上传时间: 2013-11-06

    上传用户:DE2542

  • 用C51实现无功补偿中电容组循环投切的算法

    介绍了用单片机C 语言实现无功补偿中电容组循环投切的基本原理和算法,并举例说明。关键词:循环投切;C51;无功补偿中图分类号: TM76 文献标识码: BAbstract: This paper introduces the aplication of C51 in the controlling of capacitorsuits cycle powered to be on and off in reactive compensation.it illustrate thefondamental principle and algorithm with example.Key words: cycle powered to be on and off; C51; reactive compensation 为提高功率因数,往往采用补偿电容的方法来实现。而电容器的容量是由实时功率因数与标准值进行比较来决定的,实时功率因数小于标准值时,需投入电容组,实时功率因数大于标准值时,则需切除电容组。投切方式的不合理,会对电容器造成损坏,现有的控制器多采用“顺序投切”方式,在这种投切方式下排序在前的电容器组,先投后切;而后面的却后投先切。这不仅使处于前面的电容组经常处于运行状态,积累热量不易散失,影响其使用寿命,而且使后面的投切开关经常动作,同样减少寿命。合理的投切方式应为“循环投切”。这种投切方式使先投入的运行的电容组先退出,后投的后切除,从而使各组电容及投切开关使用机率均等,降低了电容组的平均运行温度,减少了投切开关的动作次数,延长了其使用寿命。

    标签: C51 无功补偿 循环 电容

    上传时间: 2014-12-27

    上传用户:hopy