虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

任意采样率

  • 基于FPGA的8PSK调制解调技术研究.rar

    软件无线电是近年提出的新的通信体系,由于其具有灵活性和可重配置性并且符合通信的发展趋势,已成为通信系统设计的研究热点。因此对基于软件无线电的调制解调技术进行深入细致的研究非常有意义。 本文首先从阐述软件无线电的理论基础入手,对多速率信号处理中的内插和抽取、带通采样、数字变频等技术进行了分析与探讨,为设计和实现8PSK调制解调器提供了非常重要的理论依据。然后,研究了8PSK调制解调技术,详细论述了它们的基本概念和原理,提出了系统实现方案,在DSP+FPGA平台上实现了8PSK信号的正确调制解调。文中着重研究了突发通信的同步和频偏纠正算法,针对同步算法选取了一种基于能量检测法的快速位同步算法,采用相关器实现,同时实现位同步和帧同步。并且对于突发通信的多普勒频偏纠正,设计了一个基于自动频率控制(AFC)环的频偏检测器,通过修改数控振荡器(NCO)的频率控制字方法来校正本地载波频率,整个算法结构简单,运算量小,频偏校正速度快,具有较好的实用性。其次,对相干解调的初始相位进行纠正时,提出了一种简单易行的CORDIC方法,同时对FPGA编程当中的一些关键问题进行了介绍。最后,设计了自适应调制解调器,根据信噪比和误码率来自适应的改变调制方式,以达到最佳的传输性能。

    标签: FPGA 8PSK 调制解调

    上传时间: 2013-04-24

    上传用户:mingaili888

  • 基于FPGA的任意波形发生器的设计与实现.rar

    随着国民经济的发展和社会的进步,人们越来越需要便捷的交通工具,从而促进了汽车工业的发展,同时汽车发动机检测维修等相关行业也发展起来。在汽车发动机检测维修中,发动机电脑(Electronic Control.Unit-ECU)检测维修是其中最关键的部分。发动机电脑根据发动机的曲轴或凸轮轴传感器信号控制发动机的喷油、点火和排气。所以,维修发动机电脑时,必须对其施加正确的信号。目前,许多发动机的曲轴和凸轮轴传感器信号已不再是正弦波和方波等传统信号,而是多种复杂波形信号。为了能够提供这种信号,本文研究并设计了一种能够产生复杂波形的低成本任意波形发生器(Arbitrary Waveform Generator-AWG)。 本文提出的任意波形发生器依据直接数字频率合成(Direct Digial FrequencySynthesis-DDFS)原理,采用自行设计现场可编程门阵列(FPGA)的方案实现频率合成,扩展数据存储器存储波形的量化幅值(波形数据),在微控制单元(MCU)的控制与协调下输出频率和相位均可调的信号。 任意波形发生器主要由用户控制界面、DDFS模块、放大及滤波、微控制器系统和电源模块五部分组成。在设计中采用FPGA芯片EPF10K10QC208-4实现DDFS的硬件算法。波形调整及滤波由两级放大电路来完成:第一级对D/A输出信号进行调整;第二级完成信号滤波及信号幅值和偏移量的调节。电源模块利用三端集成稳压器进行电压值变换,利用极性转换芯片ICL7660实现正负极性转换。 该任意波形发生器与通用模拟信号源相比具有:输出频率误差小,分辨率高,可产生任意波形,成本低,体积小,使用方便,工作稳定等优点,十分适合汽车维修行业使用,具有较好的市场前景。

    标签: FPGA 任意波形发生器

    上传时间: 2013-05-28

    上传用户:cylnpy

  • 高噪声率下极值型中值滤波算法的改进

    极值型中值滤波算法在高噪声率下的滤波效果不是很好,主要原因有以下两个:首先,滤波窗口中过多的噪声点会使窗口中的点在排序时产生中值偏移;其次是高噪声率环境下,可能序列中值本身就是是噪声点。对此,本文提出

    标签: 高噪声率 中值滤波 法的改进

    上传时间: 2013-06-26

    上传用户:小小小熊

  • 双信号快速测频技术及FPGA实现

    建立在数据率转换技术之上的宽带数字侦察接收机要求能够实现高截获概率、高灵敏度、近乎实时的信号处理能力。双信号数据率转换技术是宽带数字侦察接收机关键技术之一,是解决宽带数字接收机中前端高速ADC采样的高速数据流与后端DSP处理速度之间瓶颈问题的可行方案。测频技术以及带通滤波,即宽带数字下变频技术,是实现数据率转换系统的关键技术。本文首先介绍了宽带数字侦察接收关键技术之一的数据率转换技术,着重研究了快速、高精度双信号测频算法以及实验系统硬件实现。论文主要工作如下: (1)分析了现代电子侦察环境下的信号特征,指出宽带数字接收机必须满足宽监视带宽、流水作业以及近实时的响应时间。给出了一种频率引导式的数字接收机方案,简要介绍这种接收机的关键技术——快速、高精度频率估计以及高效的数据率转换。 (2)介绍了FFT技术在测频算法中的应用,比较了FFT专用芯片及其优点和缺点,指出为了满足实时处理要求,必须选用FPGA设计FFT模块。 (3)在分析常规的插值算法基础上,提出了一种单信号的快速插值频率估计方法,只需三个FFT变换系数的实部构造频率修正项,计算量低。该方法具有精度高、测频速率快的特点。 (4)基于DFT理论和自相关理论,提出了结合FFT和自相关的双信号频率估计算法。该方法先用DFT估计其中一个信号的频率和幅度,以此频率对信号解调并对消该频率成分,最后利用自相关理论估计出另一个信号的频率。 (5)基于DFT理论和FFT技术,研究了信号平方与FFT结合的双信号频率估计算法。根据信号中两频率分量的幅度比,只需一次一维平方信号谱峰搜索,就可以得到双信号的和频与差频分量的估计值,并利用插值技术提高测频精度。该算法能够精确地估计频率间隔小的双信号频率,且容易地扩展到复信号,FPGA硬件实现容易。 (6)基于现代谱分析理论,研究了基于AR(2)模型的双信号频率估计算法。方法在利用AR(2)模型系数估计双正弦信号频率之和的同时,利用FFT快速测频算法估计其中强信号分量的频率值。算法仿真验证和性能分析表明了提出的算法能快速高精度地估计双信号频率。 (7)给出了基于频谱重心算法的雷达双信号频率估计的FPGA硬件实现架构,并进行了时序仿真。 (8)讨论了双信号带宽匹配接收系统的硬件设计方案,给出了快速测频及带宽估计模块设计。

    标签: FPGA 信号 测频

    上传时间: 2013-06-02

    上传用户:youke111

  • 基于FPGA的高速采样自适应滤波系统的研究

    自适应滤波器的硬件实现一直是自适应信号处理领域研究的热点。随着电子技术的发展,数字系统功能越来越强大,对器件的响应速度也提出更高的要求。 本文针对用通用DSP 芯片实现的自适应滤波器处理速度低和用HDL语言编写底层代码用FPGA实现的自适应滤波器开发效率低的缺点,提出了一种基于DSP Builder系统建模的设计方法。以随机2FSK信号作为研究对象,首先在matlab上编写了LMS去噪自适应滤波器的点M文件,改变自适应参数,进行了一系列的仿真,对算法迭代步长、滤波器的阶数与收敛速度和滤波精度进行了研究,得出了最佳自适应参数,即迭代步长μ=0.0057,滤波器阶数m=8,为硬件实现提供了参考。 然后,利用最新DSP Builder工具建立了基于LMS算法的8阶2FSK信号去噪自适应滤波器的模型,结合多种EDA工具,在EPFlOKl00EQC208-1器件上设计出了最高数据处理速度为36.63MHz的8阶LMS自适应滤波器,其速度是文献[3]通过编写底层VHDL代码设计的8阶自适应滤波器数据处理速度7倍多,是文献[50]采用DSP通用处理器TMS320C54X设计的8阶自适应滤波器处理速度25倍多,开发效率和器件性能都得到了大大地提高,这种全新的设计理念与设计方法是EDA技术的前沿与发展方向。 最后,采用异步FIFO技术,设计了高速采样自适应滤波系统,完成了对双通道AD器件AD9238与自适应滤波器的高速匹配控制,在QuartusⅡ上进行了仿真,给出了系统硬件实现的原理框图,并将采样滤波控制器与异步FIF0集成到同一芯片上,既能有效降低高频可能引起的干扰又降低了系统的成本。

    标签: FPGA 高速采样 自适应滤波

    上传时间: 2013-06-01

    上传用户:ynwbosss

  • 任意波形信号发生器系统的硬件开发Development of Signal Generator System with Random Waveform

    近几年,微波遥感的运用越来越广泛,并根据应用范围的不同,对信号源的要求也各有不同,尤其是信号的波形、工作频率和带宽等参数,更是对探测效果起着关键作用。本文介绍一个任意波形信号发生器系统的

    标签: Development Generator Waveform Signal

    上传时间: 2013-07-20

    上传用户:王者A

  • 基于ARM和USB2.0的瞬变电磁数据采集系统的研究与设计

    瞬变电磁法作为一种重要的地球物理探测方法,由于它在时间和空间上的可分性,使得这种方法简单易行,信息丰富,精度较高,低成本,见效快,从而在矿藏勘探、钻井和海洋勘探等领域得到了广泛的应用。随着接收仪器的数字化和智能化,发射功率的增大,数字模型计算正反演的应用,解释水平的提高,瞬变电磁法可解决的地质问题不断扩大,几乎涉及了物探工作的各个领域:矿产勘探,构造探测,水文与工程、地质调查,环境调查与监测以及考古等。近年来,在找水、市政工程、土壤盐碱化和污染调查、浅层石油构造填图,以及矿井突水预测等领域都取得了良好效果。 瞬变电磁法探测系统包括发射机和接收机两部分。接收机用作在噪声中提取由发射机发射的一次场信号在地下导体中感应出的二次场信息,其信息反映了地下导体的电阻率差异,通过对该信息数据的处理了解探测目标的特性从而达到探测的目的。 瞬变电磁信号具有早期信号幅度大、衰减快,而中晚期信号幅度小、衰减慢的大动态范围的特点。因此,必须设计出能适应这种瞬时变化快、动态范围大数据信号要求的高性能数据采集系统。同时,瞬变电磁探测系统的工作环境大都是在野外,因此,为适应野外工作的需要,数据采集卡尤其要有较低的功耗。 本论文在总结其他数据采集系统设计的基础上,提高采样速率和采样精度、采用分段放大技术避免放大饱和和实现对小信号的有效识别、改用ARM作为核心处理器实现对接收机的有效控制、改进USB2.0的实际传输速度、改用自适应滤波法等噪声抑制方法组合实现抗干扰和噪声滤除设计,成功设计和实现了一套基于ARM和USB2.0的瞬变电磁数据采集系统,该系统具有高性能,低功耗,抗干扰能力强,低成本的特点,已成功应用于瞬变电磁探测实践,并取得良好效果,极大的满足了瞬变电磁探测系统的需要。同时,该系统对于其他数据采集系统的设计具有一定的借鉴意义。

    标签: ARM 2.0 USB 瞬变电磁

    上传时间: 2013-06-21

    上传用户:txfyddz

  • 基于ARM架构的μCOS-Ⅱ移植及其实时同步交流采样研究

    随着微处理器技术与信息技术的不断发展,嵌入式系统的应用也进入到国防、工业、能源、交通以及日常生活中的各个领域。嵌入式系统的软件核心是嵌入式操作系统。然而,国内在嵌入式系统软件开发上有很多困难,主要有:国外成熟的RTOS大都价格昂贵并且不公开源代码,用好这些操作系统需对计算机体系结构有深刻理解。针对以上问题,免费公开源代码的嵌入式操作系统就倍受瞩目了,μC/OS-II就是其中之一。μC/OS-II是面向中小型应用的、基于优先级的可剥夺嵌入式实时内核,其特点是小巧、性能稳定、可免费获得源代码。 本文在深入研究μC/OS-II内核基础上,将其运用于实际课题,完成了基于ARM架构的μC/OS-II移植及实时同步交流采样的误差补偿研究。本文主要工作内容和研究成果如下: 1.剖析了μC/OS-II操作系统内核,重点研究了μC/OS-II内核的任务管理与调度算法机理,得出了μC/OS-II内核优点:任务调度算法简洁、高效、实时性较好(与Linux相比)。 2.介绍了ARM9体系架构,重点讲叙了MMU(存储管理单元)功能。为了提高交流采样系统的取指令和读数据速度,成功将MMU功能应用于本嵌入式系统中。 3.完成了μC/OS-II操作系统在目标板上的移植,主要用汇编语言编写了启动代码、开关中断、任务切换和首次任务切换等函数。 4.针对国内外提出的同步交流采样误差补偿算法的局限性,本文从理论上对同步交流采样的准确误差进行了研究,并尝试根据被测信号周期的首尾过零点的三角形相似法,求出误差参数并对误差进行补偿。此外,考虑到采样周期△T不均匀,经多次采样后会产生累积误差,本文也给出了采样周期△T的优化算法。 5.完成了系统硬件设计,并根据补偿算法和△T优化法则,编写了相应采样驱动和串口驱动。最后对实验数据进行了分析和比较,得出重要结论:该补偿算法实现简单,计算机工作量小,精度较高。

    标签: ARM COS 架构 交流采样

    上传时间: 2013-04-24

    上传用户:xzt

  • 基于ARM的TimeToCount辐射测量仪的研究

    随着半导体工艺的飞速发展和芯片设计水平的不断进步,ARM微处理器的性能得到大幅度地提高,同时其芯片的价格也在不断下降,嵌入式系统以其独有的优势,己经广泛地渗透到科学研究和日常生活的各个方面。 本文以ARM7 LPC2132处理器为核心,结合盖革一弥勒计数管对Time-To-Count辐射测量方法进行研究。ARM结构是基于精简指令集计算机(RISC)原理而设计的,其指令集和相关的译码机制比复杂指令集计算机要简单得多,使用一个小的、廉价的ARM微处理器就可实现很高的指令吞吐量和实时的中断响应。基于ARM7TDMI-S核的LPC2132微处理器,其工作频率可达到60MHz,这对于Time-To-Count技术是非常有利的,而且利用LPC2132芯片的定时/计数器引脚捕获功能,可以直接读取TC中的计数值,也就是说不再需要调用中断函数读取TC值,从而大大降低了计数前杂质时间。本文是在我师兄吕军的《Time-To-Count测量方法初步研究》基础上,使用了高速的ARM芯片,对基于MCS-51的Time-To-Count辐射测量系统进行了改进,进一步论证了采用高速ARM处理器芯片可以极大的提高G-M计数器的测量范围与测量精度。 首先,讨论了传统的盖革-弥勒计数管探测射线强度的方法,并指出传统的脉冲测量方法的不足。然后讨论了什么是Time-To-Count测量方法,对Time-To-Count测量方法的理论基础进行分析。指出Time-To-Count方法与传统的脉冲计数方法的区别,以及采用Time-To-Count方法进行辐射测量的可行性。 接着,详细论述基于ARM7 LPC2132处理器的Time-To-Count辐射测量仪的原理、功能、特点以及辐射测量仪的各部分接口电路设计及相关程序的编制。 最后得出结论,通过高速32位ARM处理器的使用,Time-To-Count辐射测量仪的精度和量程均得到很大的提高,对于Y射线总量测量,使用了ARM处理器的Time-To-Count辐射测量仪的量程约为20 u R/h到1R/h,数据线性程度也比以前的Time-To-CotJnt辐射测量仪要好。所以在使用Time-To-Count方法进行的辐射测量时,如何减少杂质时间以及如何提高计数前时间的测量精度,是决定Time-To-Count辐射测量仪性能的关键因素。实验用三只相同型号的J33G-M计数管分别作为探测元件,在100U R/h到lR/h的辐射场中进行试验.每个测量点测量5次取平均,得出随着照射量率的增大,辐射强度R的测量值偏小且与辐射真实值之间的误差也随之增大。如果将测量误差限定在10%的范围内,则此仪器的量程范围为20 u R/h至1R/h,量程跨度近六个数量级。而用J33型G-M计数管作常规的脉冲测量,量程范围约为50 u R/h到5000 u R/h,充分体现了运用Time-To-Count方法测量辐射强度的优越性,也从另一个角度反应了随着计数前时间的逐渐减小,杂质时间在其中的比重越来越大,对测量结果的影响也就越来越严重,尽可能的减小杂质时间在Time-To-Count方法辐射测量特别是测量高强度辐射中是关键的。笔者用示波器测出此辐射仪器的杂质时间约为6.5 u S,所以在计算定时器值的时候减去这个杂质时间,可以增加计数前时间的精确度。通过实验得出,在标定仪器的K值时,应该在照射量率较低的条件下行,而测得的计数前时间是否精确则需要在照射量率较高的条件下通过仪器标定来检验。这是因为在照射量率较低时,计数前时间较大,杂质时间对测量结果的影响不明显,数据线斜率较稳定,适宜于确定标定系数K值,而在照射量率较高时,计数前时间很小,杂质时间对测量结果的影响较大,可以明显的在数据线上反映出来,从而可以很好的反应出仪器的性能与量程。实验证明了Time-To-Count测量方法中最为关键的环节就是如何对计数前时间进行精确测量。经过对大量实验数据的分析,得到计数前时间中的杂质时间可分为硬件杂质时间和软件杂质时间,并以软件杂质时间为主,通过对程序进行合理优化,软件杂质时间可以通过程序的改进而减少,甚至可以用数学补偿的方法来抵消,从而可以得到比较精确的计数前时间,以此得到较精确的辐射强度值。对于本辐射仪,用户可以选择不同的工作模式来进行测量,当辐射场较弱时,通常采用规定次数测量的方式,在辐射场较强时,应该选用定时测量的方式。因为,当辐射场较弱时,如果用规定次数测量的方式,会浪费很多时间来采集足够的脉冲信号。当辐射场较强时,由于辐射粒子很多,产生脉冲的频率就很高,规定次数的测量会加大测量误差,当选用定时测量的方式时,由于时间的相对加长,所以记录的粒子数就相对的增加,从而提高仪器的测量精度。通过调研国内外先进核辐射测量仪器的发展现状,了解到了目前最新的核辐射总量测量技术一Time-To-Count理论及其应用情况。论证了该新技术的理论原理,根据此原理,结合高速处理器ARM7 LPC2132,对以G-计数管为探测元件的Time-To-Count辐射测量仪进行设计。论文以实验的方法论证了Time-To-Count原理测量核辐射方法的科学性,该辐射仪的量程和精度均优于以前以脉冲计数为基础理论的MCS-51核辐射测量仪。该辐射仪具有量程宽、精度高、易操作、用户界面友好等优点。用户可以定期的对仪器的标定,来减小由于电子元件的老化对低仪器性能参数造成的影响,通过Time-To-Count测量方法的使用,可以极大拓宽G-M计数管的量程。就仪器中使用的J33型G-M计数管而言,G-M计数管厂家参考线性测量范围约为50 u R/h到5000 u R/h,而用了Time-To-Count测量方法后,结合高速微处理器ARM7 LPC2132,此核辐射测量仪的量程为20 u R/h至1R/h。在允许的误差范围内,核辐射仪的量程比以前基于MCS-51的辐射仪提高了近200倍,而且精度也比传统的脉冲计数方法要高,测量结果的线性程度也比传统的方法要好。G-M计数管的使用寿命被大大延长。 综上所述,本文取得了如下成果:对国内外Time-To-Count方法的研究现状进行分析,指出了Time-To-Count测量方法的基本原理,并对Time-T0-Count方法理论进行了分析,推导出了计数前时间和两个相邻辐射粒子时间间隔之间的关系,从数学的角度论证了Time-To-Count方法的科学性。详细说明了基于ARM 7 LPC2132的Time-To-Count辐射测量仪的硬件设计、软件编程的过程,通过高速微处理芯片LPC2132的使用,成功完成了对基于MCS-51单片机的Time-To-Count测量仪的改进。改进后的辐射仪器具有量程宽、精度高、易操作、用户界面友好等特点。本论文根据实验结果总结出了Time-To-Count技术中的几点关键因素,如:处理器的频率、计数前时间、杂质时间、采样次数和测量时间等,重点分析了杂质时间的组成以及引入杂质时间的主要因素等,对国内核辐射测量仪的研究具有一定的指导意义。

    标签: TimeToCount ARM 辐射测量仪

    上传时间: 2013-06-24

    上传用户:pinksun9

  • 基于ARM的掌形识别门禁系统研究与设计

    自“9.11”后,随着人们对安防需求的升级,门禁控制系统得到日益广泛的应用,不断提高门禁系统的安全性成为研究的重要课题。第四代门禁系统结合了人体生物特征识别技术,利用人体本身具有的物理特征(如指纹、虹膜、脸型、掌纹等)或行为特征(如步态、签名等)来确定人的身份,取代或加强传统的身份识别方法。 论文采用掌形识别为控制方案,基于ARM920T内核的EP9315芯片为门禁系统CPU,设计和调试了系统的硬件平台。 论文研究了掌形识别算法,进行了三方面的工作。 首先研究了掌形中的手形特征,提出了一种基于骨架特征的手形识别算法,很好的克服了手指旋转给识别带来的干扰。 然后研究了掌形中的掌纹特征,通过系列图像处理,分离出手掌的三条主线,提取主线端点,并在主线上等间隔采样,利用端点和采样点进行匹配,拥有很高的识别率。 最后结合手形与掌纹特征,实现掌形识别。依据手形特征对掌形库进行粗分类,利用掌纹特征进行匹配,算法拥有很快的识别速度与稳定较高的识别率。对分类规则提出了新思路与方法。 论文还提出了基于ARM的门禁系统方案。成功设计了以基于ARM920T内核的EP9315芯片为CPU的最小系统,设计PCB图并制板,最后调试了系统的底层电路。 论文的研究设计工作,通过提高掌形识别算法的识别率,达到了提高门禁系统安全性的目的;ARM平台的设计与调试,在工程实际中有参考价值。

    标签: ARM 识别 系统研究 门禁

    上传时间: 2013-04-24

    上传用户:zsjzc