•合肥光源:0.8Gev,第二代专用同步辐射光源 •二期工程目标之一:控制束流轨道的稳定性 较敏感的实验站窗口的光源点之垂直移动稳定在±30µm 全环垂直方向轨道稳定在±0.1mm
上传时间: 2013-11-22
上传用户:avensy
提出了一种针对学校的专用电子日历,除基本的时间显示功能外,还有温度显示和倒计时提醒功能。系统以AT89S51单片机和DS12C887实时时钟日历芯片作为核心,利用DS18B20数字温度传感器测量环境温度。系统电路简单,性能可靠,操作简单,实时性好,时间和温度精度高。该电子日历可应用于一般学校的办公室和教室中,给教师和学生带来更多的方便。
标签: 电子日历
上传时间: 2013-11-21
上传用户:sc965382896
编写延时程序专用
上传时间: 2014-12-24
上传用户:Andy123456
全国物联网嵌入式大赛比赛专用板介绍
标签: LPCXpresso_Getting_Started_Guide NXP
上传时间: 2013-11-05
上传用户:xg262122
QSP-12是一款性/价比极高的直接使用USB通讯协议而开发的三星单片机专用编程器。不同于传统采用USB转RS232的编程器,直接使用USB通讯协议的QSP-12更快更可靠!配合精心优化设计的PC客户端编程(烧录)软件,实现了业界最高的编程性能。自动烧录S3F9454(包含擦除/编程/校验/写Smart option/Read protect/LDC protect/Hard Lock)只须0.7秒,代码越小,烧录越快;代码越大,优势越明显! 编程器采用小巧而坚实的烤漆铁质外壳设计,具有极高的耐用性和抗电磁干扰能力,配备防止反插的RJ-11专业在线编程接口,确保您在使用过程中没机会出错。QSP-12快速可靠的编程(烧录)能力,无论是您在产品开发、量产,还是在产品的现场升级阶段,它都能给您带来前所未有高效、可靠的编程体验!在现今人力成本日益高涨的时代,为您赢得更多优势! QSP-12特点: 直接使用USB通讯,更快、更可靠 无需用户设定编程电压,更安全、易用 业界最高的编程性能,节省人力成本 支持脱机烧录 支持在线编程(ISP) 外形小巧,方便产品现场升级 坚实的烤漆铁质外壳,更美观耐用、抗电磁干扰能力强 低功耗(<0.5W),绿色环保
上传时间: 2013-11-19
上传用户:uuuuuuu
[摘要]目的:设计一种脉搏波信号发生器,能够发出代替人体实际脉搏波的信号,将其发送至各类脉搏波信号检测仪器中,以求调试和检查这类仪器的性能指标。方法:以C8051F020单片机为核心,通过USB接口连接上位机,获得所需的反映人体不同生理状态的脉搏波波形信号并存储,根据用户的不同选择,将脉搏波波形信号发送到指定的仪器上。结果:该脉搏波信号发生器可以方便的接收上位机发来的脉搏波波形信号,并将脉搏波波形信号储存在自身的Flash芯片中,脉搏波信号发生器可以发送各类脉搏波信号。结论:该脉搏波信号发生器结构简单、体积小,可以方便的发出各种脉搏波波形信号,并且每一种脉搏波信号都反映了人体的不同生理状态,属于专用信号
上传时间: 2013-11-24
上传用户:CSUSheep
形象了解车的直立行走
上传时间: 2013-10-10
上传用户:苏苏苏苏
内容提要: 介绍了MOTOTOLA单片机系统的一些实例系统和技巧。 MOTOROLA单片机具有价格低、功能强、可靠性高、功耗小等特点。本书系统地介绍它的吕位到32位单片机着重介绍M68HC05的F、T、D系列M68HC11,M68HC16(916Y1、916X1、Y1、Z2、Z1)等型号]原理,汇编语言程序设计方法和开发方法以及它的外围接口芯片,如直流无刷电动机、直流伺服电动机、过零检测、场效应大功率管驱动电路等专用芯片的应用实例。本书还列举大量在模糊控制、家用电器、通讯、传感器智能仪器、控制等方面应用和应用系统设计详解。内容新颖,文字简炼,注重实用,便于自学。 读者对象:大、中专院校和培训班学生、研究生及科研、工程技术人员。 MOTOROLA单片机(MCU)将各种存储器和子系统都集成在芯片内,同时外围集成电路芯片配套齐全。在通讯、家用电器、智能仪器、自动化等广大领域,采用单片机控制后,由于价格低、体积小、功能强、品种多、功耗低、硬件电路连接简单、开发方便等诸多特点,将有利于促使)"品向智能化、微型化、多功能化方向发展,加速产品更新换代。相应单片机技术将会逐年引进新产品、新技术,并积累丰富的应用经验。为了促进单片机开发和应用,我们编著这本书。
上传时间: 2013-10-15
上传用户:ABC677339
本书全面系统地介绍MCS-51单片机的结构、原理、接口技术、扩展应用等知识,主要内容包括;计算机运算基础,计算机硬件电路基础,单片微型机的组成原理,MCS-51系列单片机的指令系统,汇编语言程序设计,MCS-51单片机的扩展应用,MCS-51单片机接口技术,最新增强型51系列兼容单片机介绍,单片机指令一览表和常用芯片的引脚图等。 本书可作为高等理工科院校非计算机专业计算机原理和单片机课程的教材,也可供工程技术人员参考。 第一章 绪论 第一节 计算机的分类与发展 第二节 计算机的应用 第三节 微型计算机的系统组成 第四节 单片微型计算机的发展及应用 思考题与习题 第二章 计算机运算基础 第一节 数制 第二节 数的表示方法 第三节 数的运算方法 第四节 二进制数加法电路 思考题与习题 第三章 计算机的硬件电路基础 第一节 触发器 第二节 寄存器 第三节 总线结构 第四节 存储器 第五节 模型计算机的工作原理 思考题与习题 第四章 单片微型计算机的组成原理 第一节 微型计算机的结构及指令执行过程 第二节 MCS-51单片计算机的组成原理 第三节 MCS-51存储器配置 第四节 时钟电路及时序 第五节 输入输出瑞口 第六节 复位电路 第七节 MCS-51单片机的引脚功能 思考题与习题 第五章 指令系统 第一节 指令系统概述 第二节 MCS-51单片机指令系统 思考题与习题 第六章 汇编语言程序设计 第一节 汇编语言的基本知识 第二节 简单程序设计 第三节 分支程序设计 第四节 循环程序设计 第五节 查表程序设计 第六节 散转程序设计 第七节 子程序设计 第八节 浮点数及其程序设计 思考题与习题 第七章 MCS-51单片机的扩展应用 第一节 程序存储器的扩展 第二节 外部数据存储器的扩展 第三节 输入/输出与中断 第四节 定时器/计数器 第五节 串行通信 思考题与习题 第八章 MCS-51单片机接口技术 第一节 MCS-51单片机的并行接口电路 第二节 键盘与数码管显示器接口电路 第三节 专用键盘显示器接口芯片8279与单片机的接口 第四节 MCS-51单片机串行口扩展 第五节 单片机与D/A和A/D转换器的接口 思考题与习题 第九章 增强51单片机 第一节 8XC52/54/58系列单片机硬件说明 第二节 8XC51FX硬件说明 第三节 87C51GB单片机 思考题与习题 附录Ⅰ MCS-51系列单片机指令一览表 附录Ⅱ MCS-51特殊功能寄存器一览表 附录Ⅲ MCS-51特殊功能寄存器位地址分布 附录Ⅳ MCS-51内部RAM的位地址分布 附录Ⅴ 本书选取的芯片的引脚图 附录Ⅵ 常用波特率与其它参数选取关系
上传时间: 2013-10-18
上传用户:swz13842860183
本书从应用的角度,详细地介绍了MCS-51单片机的硬件结构、指令系统、各种硬件接口设计、各种常用的数据运算和处理程序及接口驱动程序的设计以及MCS-51单片机应用系统的设计,并对MCS-51单片机应用系统设计中的抗干扰技术以及各种新器件也作了详细的介绍。本书突出了选取内容的实用性、典型性。书中的应用实例,大多来自科研工作及教学实践,且经过检验,内容丰富、翔实。 本书可作为工科院校的本科生、研究生、专科生学习MCS-51单片机课程的教材,也可供从事自动控制、智能仪器仪表、测试、机电一体化以及各类从事MCS-51单片机应用的工程技术人员参考。 第一章 单片微型计等机概述 1.1 单片机的历史及发展概况 1.2 单片机的发展趋势 1.3 单片机的应用 1.3.1 单片机的特点 1.3.2 单片机的应用范围 1.4 8位单片机的主要生产厂家和机型 1.5 MCS-51系列单片机 第二章 MCS-51单片机的硬件结构 2.1 MCS-51单片机的硬件结构 2.2 MCS-51的引脚 2.2.1 电源及时钟引脚 2.2.2 控制引脚 2.2.3 I/O口引脚 2.3 MCS-51单片机的中央处理器(CPU) 2.3.1 运算部件 2.3.2 控制部件 2.4 MCS-51存储器的结构 2.4.1 程序存储器 2.4.2 内部数据存储器 2.4.3 特殊功能寄存器(SFR) 2.4.4 位地址空间 2.4.5 外部数据存储器 2.5 I/O端口 2.5.1 I/O口的内部结构 2.5.2 I/O口的读操作 2.5.3 I/O口的写操作及负载能力 2.6 复位电路 2.6.1 复位时各寄存器的状态 2.6.2 复位电路 2.7 时钟电路 2.7.1 内部时钟方式 2.7.2 外部时钟方式 2.7.3 时钟信号的输出 第三章 MCS-51的指令系统 3.1 MCS-51指令系统的寻址方式 3.1.1 寄存器寻址 3.1.2 直接寻址 3.1.3 寄存器间接寻址 3.1.4 立即寻址 3.1.5 基址寄存器加变址寄存器间址寻址 3.2 MCS-51指令系统及一般说明 3.2.1 数据传送类指令 3.2.2 算术操作类指令 3.2.3 逻辑运算指令 3.2.4 控制转移类指令 3.2.5 位操作类指令 第四章 MCS-51的定时器/计数器 4.1 定时器/计数器的结构 4.1.1 工作方式控制寄存器TMOD 4.1.2 定时器/计数器控制寄存器TCON 4.2 定时器/计数器的四种工作方式 4.2.1 方式0 4.2.2 方式1 4.2.3 方式2 4.2.4 方式3 4.3 定时器/计数器对输入信号的要求 4.4 定时器/计数器编程和应用 4.4.1 方式o应用(1ms定时) 4.4.2 方式1应用 4.4.3 方式2计数方式 4.4.4 方式3的应用 4.4.5 定时器溢出同步问题 4.4.6 运行中读定时器/计数器 4.4.7 门控制位GATE的功能和使用方法(以T1为例) 第五章 MCS-51的串行口 5.1 串行口的结构 5.1.1 串行口控制寄存器SCON 5.1.2 特殊功能寄存器PCON 5.2 串行口的工作方式 5.2.1 方式0 5.2.2 方式1 5.2.3 方式2 5.2.4 方式3 5.3 多机通讯 5.4 波特率的制定方法 5.4.1 波特率的定义 5.4.2 定时器T1产生波特率的计算 5.5 串行口的编程和应用 5.5.1 串行口方式1应用编程(双机通讯) 5.5.2 串行口方式2应用编程 5.5.3 串行口方式3应用编程(双机通讯) 第六章 MCS-51的中断系统 6.1 中断请求源 6.2 中断控制 6.2.1 中断屏蔽 6.2.2 中断优先级优 6.3 中断的响应过程 6.4 外部中断的响应时间 6.5 外部中断的方式选择 6.5.1 电平触发方式 6.5.2 边沿触发方式 6.6 多外部中断源系统设计 6.6.1 定时器作为外部中断源的使用方法 6.6.2 中断和查询结合的方法 6.6.3 用优先权编码器扩展外部中断源 第七章 MCS-51单片机扩展存储器的设计 7.1 概述 7.1.1 只读存储器 7.1.2 可读写存储器 7.1.3 不挥发性读写存储器 7.1.4 特殊存储器 7.2 存储器扩展的基本方法 7.2.1 MCS-51单片机对存储器的控制 7.2.2 外扩存储器时应注意的问题 7.3 程序存储器EPROM的扩展 7.3.1 程序存储器的操作时序 7.3.2 常用的EPROM芯片 7.3.3 外部地址锁存器和地址译码器 7.3.4 典型EPROM扩展电路 7.4 静态数据存储的器扩展 7.4.1 外扩数据存储器的操作时序 7.4.2 常用的SRAM芯片 7.4.3 64K字节以内SRAM的扩展 7.4.4 超过64K字节SRAM扩展 7.5 不挥发性读写存储器扩展 7.5.1 EPROM扩展 7.5.2 SRAM掉电保护电路 7.6 特殊存储器扩展 7.6.1 双口RAMIDT7132的扩展 7.6.2 快擦写存储器的扩展 7.6.3 先进先出双端口RAM的扩展 第八章 MCS-51扩展I/O接口的设计 8.1 扩展概述 8.2 MCS-51单片机与可编程并行I/O芯片8255A的接口 8.2.1 8255A芯片介绍 8.2.2 8031单片机同8255A的接口 8.2.3 接口应用举例 8.3 MCS-51与可编程RAM/IO芯片8155H的接口 8.3.1 8155H芯片介绍 8.3.2 8031单片机与8155H的接口及应用 8.4 用MCS-51的串行口扩展并行口 8.4.1 扩展并行输入口 8.4.2 扩展并行输出口 8.5 用74LSTTL电路扩展并行I/O口 8.5.1 用74LS377扩展一个8位并行输出口 8.5.2 用74LS373扩展一个8位并行输入口 8.5.3 MCS-51单片机与总线驱动器的接口 8.6 MCS-51与8253的接口 8.6.1 逻辑结构与操作编址 8.6.2 8253工作方式和控制字定义 8.6.3 8253的工作方式与操作时序 8.6.4 8253的接口和编程实例 第九章 MCS-51与键盘、打印机的接口 9.1 LED显示器接口原理 9.1.1 LED显示器结构 9.1.2 显示器工作原理 9.2 键盘接口原理 9.2.1 键盘工作原理 9.2.2 单片机对非编码键盘的控制方式 9.3 键盘/显示器接口实例 9.3.1 利用8155H芯片实现键盘/显示器接口 9.3.2 利用8031的串行口实现键盘/显示器接口 9.3.3 利用专用键盘/显示器接口芯片8279实现键盘/显示器接口 9.4 MCS-51与液晶显示器(LCD)的接口 9.4.1 LCD的基本结构及工作原理 9.4.2 点阵式液晶显示控制器HD61830介绍 9.5 MCS-51与微型打印机的接口 9.5.1 MCS-51与TPμp-40A/16A微型打印机的接口 9.5.2 MCS-51与GP16微型打印机的接口 9.5.3 MCS-51与PP40绘图打印机的接口 9.6 MCS-51单片机与BCD码拨盘的接口设计 9.6.1 BCD码拨盘 9.6.2 BCD码拨盘与单片机的接口 9.6.3 拨盘输出程序 9.7 MCS-51单片机与CRT的接口 9.7.1 SCIBCRT接口板的主要特点及技术参数 9.7.2 SCIB接口板的工作原理 9.7.3 SCIB与MCS-51单片机的接口 9.7.4 SCIB的CRT显示软件设计方法 第十章 MCS-51与D/A、A/D的接口 10.1 有关DAC及ADC的性能指标和选择要点 10.1.1 性能指标 10.1.2 选择ABC和DAC的要点 10.2 MCS-51与DAC的接口 10.2.1 MCS-51与DAC0832的接口 10.2.2 MCS-51同DAC1020及DAC1220的接口 10.2.3 MCS-51同串行输入的DAC芯片AD7543的接口 10.3 MCS-51与ADC的接口 10.3.1 MCS-51与5G14433(双积分型)的接口 10.3.2 MCS-51与ICL7135(双积分型)的接口 10.3.3 MCS-51与ICL7109(双积分型)的接口 10.3.4 MCS-51与ADC0809(逐次逼近型)的接口 10.3.5 8031AD574(逐次逼近型)的接口 10.4 V/F转换器接口技术 10.4.1 V/F转换器实现A/D转换的方法 10.4.2 常用V/F转换器LMX31简介 10.4.3 V/F转换器与MCS-51单片机接口 10.4.4 LM331应用举例 第十一章 标准串行接口及应用 11.1 概述 11.2 串行通讯的接口标准 11.2.1 RS-232C接口 11.2.2 RS-422A接口 11.2.3 RS-485接口 11.2.4 各种串行接口性能比较 11.3 双机串行通讯技术 11.3.1 单片机双机通讯技术 11.3.2 PC机与8031单片机双机通讯技术 11.4 多机串行通讯技术 11.4.1 单片机多机通讯技术 11.4.2 IBM-PC机与单片机多机通讯技术 11.5 串行通讯中的波特率设置技术 11.5.1 IBM-PC/XT系统中波特率的产生 11.5.2 MCS-51单片机串行通讯波特率的确定 11.5.3 波特率相对误差范围的确定方法 11.5.4 SMOD位对波特率的影响 第十二章 MCS-51的功率接口 12.1 常用功率器件 12.1.1 晶闸管 12.1.2 固态继电器 12.1.3 功率晶体管 12.1.4 功率场效应晶体管 12.2 开关型功率接口 12.2.1 光电耦合器驱动接口 12.2.2 继电器型驱动接口 12.2.3 晶闸管及脉冲变压器驱动接口 第十三章 MCS-51单片机与日历的接口设计 13.1 概述 13.2 MCS-51单片机与实时日历时钟芯片MSM5832的接口设计 13.2.1 MSM5832性能及引脚说明 13.2.2 MSM5832时序分析 13.2.3 8031单片机与MSM5832的接口设计 13.3 MCS-51单片机与实时日历时钟芯片MC146818的接口设计 13.3.1 MC146818性能及引脚说明 13.3.2 MC146818芯片地址分配及各单元的编程 13.3.3 MC146818的中断 13.3.4 8031单片机与MC146818的接口电路设计 13.3.5 8031单片机与MC146818的接口软件设计 第十四章 MCS-51程序设计及实用子程序 14.1 查表程序设计 14.2 散转程序设计 14.2.1 使用转移指令表的散转程序 14.2.2 使用地地址偏移量表的散转程序 14.2.3 使用转向地址表的散转程序 14.2.4 利用RET指令实现的散转程序 14.3 循环程序设计 14.3.1 单循环 14.3.2 多重循环 14.4 定点数运算程序设计 14.4.1 定点数的表示方法 14.4.2 定点数加减运算 14.4.3 定点数乘法运算 14.4.4 定点数除法 14.5 浮点数运算程序设计 14.5.1 浮点数的表示 14.5.2 浮点数的加减法运算 14.5.3 浮点数乘除法运算 14.5.4 定点数与浮点数的转换 14.6 码制转换 ……
上传时间: 2013-11-06
上传用户:xuanjie