电力线载波通讯是一种低价方便、并可免除装设专用通信线路的通信技术, 文中介绍了利用Chirps 扫描频率进行载波的扩频通讯技术和CEBUS 总线的有关协议, 给出了由SSC P300 芯片构成的电力线载波通讯电路在电表自动抄收系统中的应用设计实例。
上传时间: 2013-11-16
上传用户:hanwu
一般电脑都有一个专用的电源排插。它上面插有电脑主机、显示器、音箱、交换机等的电源插头,但每次用完电脑后都得去关排插开关,很麻烦。为此笔者设计了一个电脑控制的自动开关。当关闭电脑时,它就自动把排插开关关了,并且,如果意外停电后再次来电时。那开关也是断开的,从而保证电器的安全。
上传时间: 2013-12-20
上传用户:dalidala
VIPER22A的内部结构可知,它与其它开关电源存在一些不同。开机后,300V的直流电压从DRAIN(漏极)脚进入集成电路,经整流和稳压后供给开关电源IC工作,从而使这个电路工作时不需要外接启动电阻。即使Vdd供电电路不正常,电源电路的振荡电路仍能起振,而且电路有输出电压。用这种专用电源IC的DVD机电源有故障时,故障现象和其他开关电源的故障有所不同,其他开关电源通常无Vdd时,电源电路中的振荡电路不起振,会出现无输出的故障现象。
上传时间: 2013-11-09
上传用户:1039312764
系统简介位于人民广场西南角的原上海市长信局电信大楼动力与机房环境集中监控系统是由上海高校仪器设备公司于1999年实施完成的大型监控项目,共分为四个相互独立的部分,包括高低压配电监控系统、通信电源监控系统、中央空调监控系统与专用空调监控系统。其中通信电源监控、中央空调监控与专用空调冷却水循环系统采用LonWorks技术,分别由129个LonWorks节点与3台上位机组成三个独立的LonWorks网络,实现相应的监控功能。其中通信电源监控系统在2001年进行了系统升级,整体性能有了很大改善,本文主要对这一系统的升级改造进行介绍,对中央空调监控系统和冷却水循环监控系统仅做概要介绍。
上传时间: 2013-11-11
上传用户:思索的小白
QA03是专为需要两组隔离电源的IGBT驱动器而设计的DC-DC模块电源。其内部采用了两路独立输出后共接模式,可以更好的为IGBT的开通与关断提供能量。同时具有输出短路保护及自恢复能力。
上传时间: 2013-11-21
上传用户:极客
QA02是专为需要两组隔离电源的IGBT驱动器而设计的DC-DC模块电源。其内部采用了两路独立输出后共接模式,可以更好的为IGBT的开通与关断提供能量。同时具有输出短路保护及自恢复能力。
上传时间: 2014-01-11
上传用户:blans
该系统采用TI 公司专用APFC 整流控制芯片UCC28019 作为控制核心,构成电压外环和电流内环的双环控制,构建了有源功率因数校正(APFC)的高功率因数整流电源。其中,电流内环作用是使网侧交流输入电流跟踪电网电压的波形与相位;电压外环为输出直流电压控制环,外环电压调节器的输出控制内环电流调节器的增益,使输出直流电压稳定。系统采用ATmega16单片机进行监控,完成输出电压的可调以及相关测量参数显示功能,系统通过ATmega16单片机以及其外围器件实现系统功率因数、输出电压、电流的实时测量、人机交互、输出过流保护等功能。实际测试表明,采用UCC28019作为本系统的APFC芯片完全达到或超过题目要求的所有指标。关键词:APFC,UCC28019,过流保护,功率因数
上传时间: 2013-10-14
上传用户:黄酒配奶茶
对差动保护进行相关检查、试验如下: 1、检查BCH-2型差动继电器与定值单相符,对差动继电器进行检查、检验合格。 2、检查差动保护二次回路接线正确,二次回路绝缘符合规程要求。 3、35kV开关为DW2-35型,检查油箱内电流互感器为差动保护专用LRD型,变比为75/5,核对变比、极性正确;6kV电流互感器为LAJ-10 300/5,差动接在D级绕组上,核对变比、极性正确。 4、对差动保护按定值单传动,各继电器动作正确。 以上各项目正常,说明一、二次设备无缺陷,二次接线无错误,便恢复主变送电,送电后进行差动保护向量和差压检测正常
上传时间: 2013-10-08
上传用户:小码农lz
同步整流技术简单介绍大家都知道,对于开关电源,在次级必然要有一个整流输出的过程。作为整流电路的主要元件,通常用的是整流二极管(利用它的单向导电特性),它可以理解为一种被动式器件:只要有足够的正向电压它就开通,而不需要另外的控制电路。但其导通压降较高,快恢复二极管(FRD)或超快恢复二极管(SRD)可达1.0~1.2V,即使采用低压降的肖特基二极管(SBD),也会产生大约0.6V的压降。这个压降完全是做的无用功,并且整流二极管是一种固定压降的器件,举个例子:如有一个管子压降为0.7V,其整流为12V时它的前端要等效12.7V电压,损耗占0.7/12.7≈5.5%.而当其为3.3V整流时,损耗为0.7/4(3.3+0.7)≈17.5%。可见此类器件在低压大电流的工作环境下其损耗是何等地惊人。这就导致电源效率降低,损耗产生的热能导致整流管进而开关电源的温度上升、机箱温度上升--------有时系统运行不稳定、电脑硬件使用寿命急剧缩短都是拜这个高温所赐。随着电脑硬件技术的飞速发展,如GeForce 8800GTX显卡,其12V峰值电流为16.2A。所以必须制造能提供更大输出电流(如多核F1,四路12V,每路16A;3.3V和5V输出电流各高达24A)的电源转换器。而当前世界的能源紧张问题的凸现,为广大用户提供更高转换效率(如多核R80,完全符合80PLUS标准)的电源转换器就是我们整个开关电源行业的不可回避的社会责任了。如何解决这些问题?寻找更好的整流方式、整流器件。同步整流技术和通态电阻(几毫欧到十几毫欧)极低的专用功率MOSFET就是在这个时刻走上开关电源技术发展的历史舞台了!作为取代整流二极管以降低整流损耗的一种新器件,功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。因为用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。它可以理解为一种主动式器件,必须要在其控制极(栅极)有一定电压才能允许电流通过,这种复杂的控制要求得到的回报就是极小的电流损耗。在实际应用中,一般在通过20-30A电流时才有0.2-0.3V的压降损耗。因为其压降等于电流与通态电阻的乘积,故小电流时,其压降和恒定压降的肖特基不同,电流越小压降越低。这个特性对于改善轻载效率(20%)尤为有效。这在80PLUS产品上已成为一种基本的解决方案了。对于以上提到的两种整流方案,我们可以通过灌溉农田来理解:肖特基整流管可以看成一条建在泥土上没有铺水泥的灌溉用的水道,从源头下来的水源在中途渗漏了很多,十方水可能只有七、八方到了农田里面。而同步整流技术就如同一条镶嵌了光滑瓷砖的引水通道,除了一点点被太阳晒掉的损失外,十方水能有9.5方以上的水真正用于浇灌那些我们日日赖以生存的粮食。我们的多核F1,多核R80,其3.3V整流电路采用了通态电阻仅为0.004欧的功率MOSFET,在通过24A峰值电流时压降仅为20*0.004=0.08V。如一般PC正常工作时的3.3V电流为10A,则其压降损耗仅为10*0.004=0.04V,损耗比例为0.04/4=1%,比之于传统肖特基加磁放大整流技术17.5%的损耗,其技术的进步已不仅仅是一个量的变化,而可以说是有了一个质的飞跃了。也可以说,我们为用户修建了一条严丝合缝的灌溉电脑配件的供电渠道。
标签: 同步整流
上传时间: 2013-10-27
上传用户:杏帘在望
SMARTISYS IPPCI系列电源控制器是会议演示、指挥控制等系统中必不可少的设备。通过对应用系统中所有设备的电源进行集中管理、定时、延时开关,以及对电动设备的程序化控制,能最大限度保护用电设备,极大的提高系统可靠性和使用方便性。 IPPCI系列产品有程序控制和手动控制两种模式;在应急情况下,可以通过手动方式对相关设备的电源直接进行开关控制及操作;在程序控制模式下,通TM过SmartControlBuilder编程进行任意独立或组合控制。输入采用4-pin专用网络接线端子,用于直接给电源控制系统供电和发送控制信号;另外,还包括9-pin接线端子,用于连接8个本地输入控制8路继电器的开、关。
上传时间: 2013-10-25
上传用户:wlcaption