该程序算导体的远区辐射场!是用fortran语言编写,希望对大家有帮助!
上传时间: 2013-12-22
上传用户:nairui21
好好学习下哈 4个偶极子天线阵的辐射场图 学习啊
上传时间: 2015-08-06
上传用户:love1314
在matlab环境上 用几何绕射法计算缝隙的辐射场
上传时间: 2015-10-30
上传用户:zhaiye
矩量法求天线辐射场的代码和报告
上传时间: 2014-08-09
上传用户:leixinzhuo
在选用地球同步轨道卫星、浮空气球平台等相对地面静止的平台对某一区域进行长时间定点凝视高分辨遥感成像时,传统的微波凝视成像,由于横向分辨率受限于天线孔径,分辨率不高,SAR和ISAR能够获得横向上的高分辨但是二者横向分辨率的获得依赖于雷达与目标的相对运动,限制了其在上述场合的应用。因此探索一种能够实现凝视条件下的高分辨成像方法是十分必要的本文研究了一种全新的微波凝视成像方法—基于时空随机辐射场的微波凝视成像方法,进行了高分辨成像的初步探索,在理论上基于时空随机辐射场的微波凝视成像方法获得的空间分辨率可以突破天线孔径的限制,大大提高了分辨率首先论文研究了基于时空随机辐射场的微波凝视成像新方法的基本原理提出时空两维随机分布的辐射场是实现高分辨微波凝视成像的前提:分析了在时空随机辐射场作用下,目标信息提取与解耦的方法:将接收到的散射回波和与之相对应的时空随机辐射场进行强度关联处理其次论文详细讨论了基于时空随机辐射场的微波凝视成像的成像过程,建立了从信号产生,辐射,散射,接收到关联处理的成像模型。深入分析了成像过程中信号的相关变化:从两个过程步建立了时空随机辐射场与辐射源的关系的模型:(1)推导了辐射源与时空随机分布口面场的关系,(2)建立了口面场经空间传播后的时空随机辐射场的数学模型:推导了随机辐射场下的散射场表达式:提出了微波强度关联为基于时空随机辐射场下的目标信息提取以及解的方法最后论文研究了基于时空随机辐射场的微波凝视成像中随机辐射源的特性。详细讨论了辐射源分别辐射理想的随机信号,带限随机信号下时空随机特性:分析了辐射源的空间构型(辐射源的个数和辐射源的口径)对辐射场时空随机性的影响:从整个成像的角度,推导了随机辐射源的参数对基于时空随机辐射场的微波凝视成像的影响。
标签: 辐射场
上传时间: 2022-03-14
上传用户:
随着半导体工艺的飞速发展和芯片设计水平的不断进步,ARM微处理器的性能得到大幅度地提高,同时其芯片的价格也在不断下降,嵌入式系统以其独有的优势,己经广泛地渗透到科学研究和日常生活的各个方面。 本文以ARM7 LPC2132处理器为核心,结合盖革一弥勒计数管对Time-To-Count辐射测量方法进行研究。ARM结构是基于精简指令集计算机(RISC)原理而设计的,其指令集和相关的译码机制比复杂指令集计算机要简单得多,使用一个小的、廉价的ARM微处理器就可实现很高的指令吞吐量和实时的中断响应。基于ARM7TDMI-S核的LPC2132微处理器,其工作频率可达到60MHz,这对于Time-To-Count技术是非常有利的,而且利用LPC2132芯片的定时/计数器引脚捕获功能,可以直接读取TC中的计数值,也就是说不再需要调用中断函数读取TC值,从而大大降低了计数前杂质时间。本文是在我师兄吕军的《Time-To-Count测量方法初步研究》基础上,使用了高速的ARM芯片,对基于MCS-51的Time-To-Count辐射测量系统进行了改进,进一步论证了采用高速ARM处理器芯片可以极大的提高G-M计数器的测量范围与测量精度。 首先,讨论了传统的盖革-弥勒计数管探测射线强度的方法,并指出传统的脉冲测量方法的不足。然后讨论了什么是Time-To-Count测量方法,对Time-To-Count测量方法的理论基础进行分析。指出Time-To-Count方法与传统的脉冲计数方法的区别,以及采用Time-To-Count方法进行辐射测量的可行性。 接着,详细论述基于ARM7 LPC2132处理器的Time-To-Count辐射测量仪的原理、功能、特点以及辐射测量仪的各部分接口电路设计及相关程序的编制。 最后得出结论,通过高速32位ARM处理器的使用,Time-To-Count辐射测量仪的精度和量程均得到很大的提高,对于Y射线总量测量,使用了ARM处理器的Time-To-Count辐射测量仪的量程约为20 u R/h到1R/h,数据线性程度也比以前的Time-To-CotJnt辐射测量仪要好。所以在使用Time-To-Count方法进行的辐射测量时,如何减少杂质时间以及如何提高计数前时间的测量精度,是决定Time-To-Count辐射测量仪性能的关键因素。实验用三只相同型号的J33G-M计数管分别作为探测元件,在100U R/h到lR/h的辐射场中进行试验.每个测量点测量5次取平均,得出随着照射量率的增大,辐射强度R的测量值偏小且与辐射真实值之间的误差也随之增大。如果将测量误差限定在10%的范围内,则此仪器的量程范围为20 u R/h至1R/h,量程跨度近六个数量级。而用J33型G-M计数管作常规的脉冲测量,量程范围约为50 u R/h到5000 u R/h,充分体现了运用Time-To-Count方法测量辐射强度的优越性,也从另一个角度反应了随着计数前时间的逐渐减小,杂质时间在其中的比重越来越大,对测量结果的影响也就越来越严重,尽可能的减小杂质时间在Time-To-Count方法辐射测量特别是测量高强度辐射中是关键的。笔者用示波器测出此辐射仪器的杂质时间约为6.5 u S,所以在计算定时器值的时候减去这个杂质时间,可以增加计数前时间的精确度。通过实验得出,在标定仪器的K值时,应该在照射量率较低的条件下行,而测得的计数前时间是否精确则需要在照射量率较高的条件下通过仪器标定来检验。这是因为在照射量率较低时,计数前时间较大,杂质时间对测量结果的影响不明显,数据线斜率较稳定,适宜于确定标定系数K值,而在照射量率较高时,计数前时间很小,杂质时间对测量结果的影响较大,可以明显的在数据线上反映出来,从而可以很好的反应出仪器的性能与量程。实验证明了Time-To-Count测量方法中最为关键的环节就是如何对计数前时间进行精确测量。经过对大量实验数据的分析,得到计数前时间中的杂质时间可分为硬件杂质时间和软件杂质时间,并以软件杂质时间为主,通过对程序进行合理优化,软件杂质时间可以通过程序的改进而减少,甚至可以用数学补偿的方法来抵消,从而可以得到比较精确的计数前时间,以此得到较精确的辐射强度值。对于本辐射仪,用户可以选择不同的工作模式来进行测量,当辐射场较弱时,通常采用规定次数测量的方式,在辐射场较强时,应该选用定时测量的方式。因为,当辐射场较弱时,如果用规定次数测量的方式,会浪费很多时间来采集足够的脉冲信号。当辐射场较强时,由于辐射粒子很多,产生脉冲的频率就很高,规定次数的测量会加大测量误差,当选用定时测量的方式时,由于时间的相对加长,所以记录的粒子数就相对的增加,从而提高仪器的测量精度。通过调研国内外先进核辐射测量仪器的发展现状,了解到了目前最新的核辐射总量测量技术一Time-To-Count理论及其应用情况。论证了该新技术的理论原理,根据此原理,结合高速处理器ARM7 LPC2132,对以G-计数管为探测元件的Time-To-Count辐射测量仪进行设计。论文以实验的方法论证了Time-To-Count原理测量核辐射方法的科学性,该辐射仪的量程和精度均优于以前以脉冲计数为基础理论的MCS-51核辐射测量仪。该辐射仪具有量程宽、精度高、易操作、用户界面友好等优点。用户可以定期的对仪器的标定,来减小由于电子元件的老化对低仪器性能参数造成的影响,通过Time-To-Count测量方法的使用,可以极大拓宽G-M计数管的量程。就仪器中使用的J33型G-M计数管而言,G-M计数管厂家参考线性测量范围约为50 u R/h到5000 u R/h,而用了Time-To-Count测量方法后,结合高速微处理器ARM7 LPC2132,此核辐射测量仪的量程为20 u R/h至1R/h。在允许的误差范围内,核辐射仪的量程比以前基于MCS-51的辐射仪提高了近200倍,而且精度也比传统的脉冲计数方法要高,测量结果的线性程度也比传统的方法要好。G-M计数管的使用寿命被大大延长。 综上所述,本文取得了如下成果:对国内外Time-To-Count方法的研究现状进行分析,指出了Time-To-Count测量方法的基本原理,并对Time-T0-Count方法理论进行了分析,推导出了计数前时间和两个相邻辐射粒子时间间隔之间的关系,从数学的角度论证了Time-To-Count方法的科学性。详细说明了基于ARM 7 LPC2132的Time-To-Count辐射测量仪的硬件设计、软件编程的过程,通过高速微处理芯片LPC2132的使用,成功完成了对基于MCS-51单片机的Time-To-Count测量仪的改进。改进后的辐射仪器具有量程宽、精度高、易操作、用户界面友好等特点。本论文根据实验结果总结出了Time-To-Count技术中的几点关键因素,如:处理器的频率、计数前时间、杂质时间、采样次数和测量时间等,重点分析了杂质时间的组成以及引入杂质时间的主要因素等,对国内核辐射测量仪的研究具有一定的指导意义。
标签: TimeToCount ARM 辐射测量仪
上传时间: 2013-06-24
上传用户:pinksun9
从偶极子天线的完整场分布出发,结合近区场和远区场的特点,在保证误差精度为1dB的前提下,经理论分析计算及MATLAB拟合对比,得到了偶极子天线近区、过渡区、远区的范围,并给出了过渡区的简化计算公式,这为中波广播周围电磁环境的计算以及测量提供了理论依据。
上传时间: 2013-10-10
上传用户:wang0123456789
结构体的具体尺寸如下所示:a=1.20h=0.620其中介质锥的介电常数E=2.0。选定工作频率为f=15GHz相对应的真空中的波长为0=20mm,这样结构体的儿何尺寸己经完全确定,下面介绍求解的全过程选定求解方式为(Solution Type)Driven modal1.建立所求结构体的几何模型(单位:mm)。由于此结构体的几何形状较简单,使用工具栏中的Draw命令可直接画出,这里不再赘述述。画出的结构体如图4.1.2所示。2.充结构体的材料选定结构体中的锥体部分,添加其介电常数Er=20的介质材料注:如果HSS中没有提供与所需参数完全相同的材料,用户可以通过新建材料或修改已有材料,使其参数满足用户需求设定结构体的边界条件及其激励源a.选定结构体的贴片部分,设定其为理想导体(PerE)。b.画出尺寸为X×Y×Z=70mm×70mm×40mm的长方体作为辐射边界,并设定其边界条件为辐射边界条件(Radiation Boundary)。c.由于要求出结构体的RCS,因此设定激励源为平面入射波(Incident Wave Source)。如图4.1.3所示。4.设定求解细节,检验并求解a.设定求解过程的工作频率为f=15GHz.其余细节设定如图4.1.4所示。b.设定远区辐射场的求解(Far Field Radiation Sphere栏的设定)。c.使用 Validation check命令进行检验,无错误发生,下一步运行命令 Analyze,对柱锥结构体进行求解。如图4.1.5和4.1.6所示。
上传时间: 2022-03-10
上传用户:
v> 目前最常见的蓝牙天线有偶极天线(dipole antenna),倒 F 型天线(planar inverted F anternna)、曲流线型天线(meander line antenna)、微小型陶瓷天线(ceramic antenna)、液晶 聚合体天线(lcp)和棒状天线(2.4G 频率专用)等。由于这些具有近似全向性的辐射场型 以及结构简单、制作成本低的优点,所以非常适合嵌入蓝牙技术装置使用。
上传时间: 2022-03-11
上传用户:
天线是作无线电波的发射或接收用的一种 金属装置。无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。同一天线作为发射或接收的基本特性参数是相同的。这就是天线的互易定理。射频天线设计TOP2.2 微带贴片天线微带贴片天线是由 贴在带有金属地板 的介质基片上的辐射贴片导体所构成的 如图3所示,根据天线辐射特性的需要,可以设计贴片导体为各种形状,通常贴片天线的辐射导体 与金属地板距离为几十分之一波长,假设辐射电场沿导体的横向与纵向两个方向没有变化,仅沿约为半波长(Ag/2)的导体长度方向变化.则微带贴片天线的辐射基本上是由贴片导体 开路边沿的边缘场 引起的,辐射方向基本确定,因此,一般适用于通讯方向变化不大的 RFID应用系统中,为了提高天线的性能并考虑其通讯方向性问题,人们还提出了各种不同的微带缝隙天线,如文献[5,6]设计了一种工作在 24 GHz的单缝隙天线和 5.9 GHz的双缝隙天线,其辐射波为线极化波;文献[7,81开发了一种圆极化缝隙耦合贴片天线,它是可以采用左旋圆极化和右旋圆极化来对二进制数据中的"R"进行编码.2.3偶极子天线在远距离耦合的 RFID应用系统中,最常用的是偶极子天线(又称对称振子天线).偶极子天线及其演化形式如图4所示,其中偶极子天线由两段同样粗细和等长的直导线排成一条直线构成,信号从中间的两个端点馈入,在偶极子的两臂上将产生一定的电流分布,这种电流分布就在天线周围空间激发起电磁场利用麦克斯韦方程就可以求出其辐射场方程:
上传时间: 2022-05-02
上传用户: