Smart Grids provide many benefits for society. Reliability, observability across the energy distribution system and the exchange of information between devices are just some of the features that make Smart Grids so attractive. One of the main products of a Smart Grid is to data. The amount of data available nowadays increases fast and carries several kinds of information. Smart metres allow engineers to perform multiple measurements and analyse such data. For example, information about consumption, power quality and digital protection, among others, can be extracted. However, the main challenge in extracting information from data arises from the data quality. In fact, many sectors of the society can benefit from such data. Hence, this information needs to be properly stored and readily available. In this chapter, we will address the main concepts involving Technology Information, Data Mining, Big Data and clustering for deploying information on Smart Grids.
标签: Processing Cities Smart Data
上传时间: 2020-05-25
上传用户:shancjb
The concept of smart cities emerged few years ago as a new vision for urban development that aims to integrate multiple information and communication technology (ICT) solutions in a secure fashion to manage a city’s assets. Modern ICT infrastructure and e-services should fuel sustainable growth and quality of life, enabled by a wise and participative management of natural resources to be ensured by citizens and government. The need to build smart cities became a requirement that relies on urban development that should take charge of the new infrastructures for smart cities (broadband infrastructures, wireless sensor networks, Internet-based networked applications, open data and open platforms) and provide various smart services and enablers in various domains including healthcare, energy, education, environmental management, transportation, mobility and public safety.
上传时间: 2020-05-25
上传用户:shancjb
The surge of mobile data traffic forces network operators to cope with capacity shortage. The deployment of small cells in 5G networks is meant to reduce latency, backhaul traffic and increase radio access capacity. In this context, mobile edge computing technology will be used to manage dedicated cache space in the radio access network. Thus, mobile network operators will be able to provision OTT content providers with new caching services to enhance the quality of experience of their customers on the move.
上传时间: 2020-05-26
上传用户:shancjb
The Internet of Things is considered to be the next big opportunity, and challenge, for the Internet engineering community, users of technology, companies and society as a whole. It involves connecting embedded devices such as sensors, home appliances, weather stations and even toys to Internet Protocol (IP) based networks. The number of IP-enabled embedded devices is increasing rapidly, and although hard to estimate, will surely outnumber the number of personal computers (PCs) and servers in the future. With the advances made over the past decade in microcontroller,low-power radio, battery and microelectronic technology, the trend in the industry is for smart embedded devices (called smart objects) to become IP-enabled, and an integral part of the latest services on the Internet. These services are no longer cyber, just including data created by humans, but are to become very connected to the physical world around us by including sensor data, the monitoring and control of machines, and other kinds of physical context. We call this latest frontier of the Internet, consisting of wireless low-power embedded devices, the Wireless Embedded Internet. Applications that this new frontier of the Internet enable are critical to the sustainability, efficiency and safety of society and include home and building automation, healthcare, energy efficiency, smart grids and environmental monitoring to name just a few.
标签: Embedded Internet Wireless 6LoWPAN The
上传时间: 2020-05-26
上传用户:shancjb
The telecommunications industry has seen a rapid boost within the last decade. New realities and visions of functionalities in various telecommunications networks have brought forward the concept of next-generation networks (NGNs). The competitions among operators for support- ing various services, lowering of the cost of having mobile and cellular phones and smartphones, increasing demand for general mobility, explosion of digital traffic, and advent of convergence network technologies added more dynamism in the idea of NGNs. In fact, facilitating con- vergence of networks and convergence of various types of services is a significant objective of NGN
标签: Next-Generation Converged Building Networks
上传时间: 2020-05-26
上传用户:shancjb
Emergingmarketshaveseenanunprecedentedgrowthinthelastfewyears.Theoperatorfocus has been on giving complete coverage to all regions (urban to rural) and to subscription to all – people from the highest to the lowest income groups. When the idea is taking coverage for the remotest of the regions and getting the ‘unconnected–connected’, technology and business modelling are two important focus areas.
标签: Technologies Cellular Emerging Markets for
上传时间: 2020-05-26
上传用户:shancjb
The aim of this book, the first of two volumes, is to present selected research that has been undertaken under COST Action IC0902 ‘‘Cognitive Radio and Net- working for Cooperative Coexistence of Heterogeneous Wireless Networks’’ (http://newyork.ing.uniroma1.it/IC0902/). COST (European Cooperation in Sci- ence and Technology) is one of the longest-running European frameworks sup- porting cooperation among scientists and researchers across Europe.
上传时间: 2020-05-26
上传用户:shancjb
Wireless technology has been evolving at a breakneck speed. The total number of cell-phones in use (as of 2011) was over 6 billion for a 7 billion world population [1] constituting 87% of the world population. Additionally, with user convenience be- coming paramount, more and more functions are being implemented wirelessly.
标签: Front-Ends Cognitive Receiver Radio
上传时间: 2020-05-26
上传用户:shancjb
This introduction takes a visionary look at ideal cognitive radios (CRs) that inte- grate advanced software-defined radios (SDR) with CR techniques to arrive at radios that learn to help their user using computer vision, high-performance speech understanding, global positioning system (GPS) navigation, sophisticated adaptive networking, adaptive physical layer radio waveforms, and a wide range of machine learning processes.
标签: Technology Cognitive Radio
上传时间: 2020-05-26
上传用户:shancjb
Cognitive radio has emerged as a promising technology for maximizing the utiliza- tion of the limited radio bandwidth while accommodating the increasing amount of services and applications in wireless networks. A cognitive radio (CR) transceiver is able to adapt to the dynamic radio environment and the network parameters to maximize the utilization of the limited radio resources while providing flexibility in wireless access. The key features of a CR transceiver are awareness of the radio envi- ronment (in terms of spectrum usage, power spectral density of transmitted/received signals, wireless protocol signaling) and intelligence.
标签: Cognitive Wireless Network
上传时间: 2020-05-26
上传用户:shancjb