MotioninterfaceTM is becoming a "must-have"function being adopted by smartphone and tablet manufacturers due to the enormous value it adds to the end user experience. In smartphones, it finds use in applications such as gesture commands for applications and phone control, enhanced gaming, augmented reality, panoramic photo capture and viewing, and pedestrian and vehicle navigation. With its ability to precisely and accurately track user motions, MotionTracking technology can convert handsets and tablets into powerful 3D intelligent devices that can be used in applications ranging from health and fitness monitoring to location-based services. Key requirements for Motionlnterface enabled devices are small package size, low power consumption, high accuracy and repeatability, high shock tolerance, and application specific performance programmability-all at a low consumer price point.
标签: mpu6050
上传时间: 2022-07-06
上传用户:zhaiyawei
PrefaceDuring the past years, there has been a quickly rising interest in radio access technologies for providingmobile as well as nomadic and fixed services for voice, video, and data. The difference indesign, implementation, and use between telecom and datacom technologies is also becoming moreblurred. One example is cellular technologies from the telecom world being used for broadband dataand wireless LAN from the datacom world being used for voice-over IP.Today, the most widespread radio access technology for mobile communication is digital cellular,with the number of users passing 5 billion by 2010, which is more than half of the world’s population.It has emerged from early deployments of an expensive voice service for a few car-borne users,to today’s widespread use of mobile-communication devices that provide a range of mobile servicesand often include camera, MP3 player, and PDA functions. With this widespread use and increasinginterest in mobile communication, a continuing evolution ahead is foreseen.This book describes LTE, developed in 3GPP (Third Generation Partnership Project) and providingtrue 4G broadband mobile access, starting from the first version in release 8 and through the continuingevolution to release 10, the latest version of LTE. Release 10, also known as LTE-Advanced,is of particular interest as it is the major technology approved by the ITU as fulfilling the IMTAdvancedrequirements. The description in this book is based on LTE release 10 and thus provides acomplete description of the LTE-Advanced radio access from the bottom up.Chapter 1 gives the background to LTE and its evolution, looking also at the different standardsbodies and organizations involved in the process of defining 4G. It also gives a discussion of the reasonsand driving forces behind the evolution.Chapters 2–6 provide a deeper insight into some of the technologies that are part of LTE and itsevolution. Because of its generic nature, these chapters can be used as a background not only for LTEas described in this book, but also for readers who want to understand the technology behind othersystems, such as WCDMA/HSPA, WiMAX, and CDMA2000.Chapters 7–17 constitute the main part of the book. As a start, an introductory technical overviewof LTE is given, where the most important technology components are introduced based onthe generic technologies described in previous chapters. The following chapters provide a detaileddescription of the protocol structure, the downlink and uplink transmission schemes, and the associatedmechanisms for scheduling, retransmission and interference handling. Broadcast operation andrelaying are also described. This is followed by a discussion of the spectrum flexibility and the associated
上传时间: 2022-07-08
上传用户: