Implementation of Edmonds Karp algorithm that calculates maxFlow of graph. Input: For each test case, the first line contains the number of vertices (n) and the number of arcs (m). Then, there exist m lines, one for each arc (source vertex, ending vertex and arc weight, separated by a space). The nodes are numbered from 1 to n. The node 1 and node n should be in different sets. There are no more than 30 arcs and 15 nodes. The arc weights vary between 1 and 1 000 000. Output: The output is a single line for each case, with the corresponding minimum size cut. Example: Input: 7 11 1 2 3 1 4 3 2 3 4 3 1 3 3 4 1 3 5 2 4 6 6 4 5 2 5 2 1 5 7 1 6 7 9 Output: 5
标签: Implementation calculates algorithm Edmonds
上传时间: 2014-01-04
上传用户:kiklkook
The 4.0 kbit/s speech codec described in this paper is based on a Frequency Domain Interpolative (FDI) coding technique, which belongs to the class of prototype waveform Interpolation (PWI) coding techniques. The codec also has an integrated voice activity detector (VAD) and a noise reduction capability. The input signal is subjected to LPC analysis and the prediction residual is separated into a slowly evolving waveform (SEW) and a rapidly evolving waveform (REW) components. The SEW magnitude component is quantized using a hierarchical predictive vector quantization approach. The REW magnitude is quantized using a gain and a sub-band based shape. SEW and REW phases are derived at the decoder using a phase model, based on a transmitted measure of voice periodicity. The spectral (LSP) parameters are quantized using a combination of scalar and vector quantizers. The 4.0 kbits/s coder has an algorithmic delay of 60 ms and an estimated floating point complexity of 21.5 MIPS. The performance of this coder has been evaluated using in-house MOS tests under various conditions such as background noise. channel errors, self-tandem. and DTX mode of operation, and has been shown to be statistically equivalent to ITU-T (3.729 8 kbps codec across all conditions tested.
标签: frequency-domain interpolation performance Design kbit_s speech coder based and of
上传时间: 2018-04-08
上传用户:kilohorse
Once upon a time, cellular wireless networks provided two basic services: voice telephony and low-rate text messaging. Users in the network were separated by orthogonal multiple access schemes, and cells by generous frequency reuse patterns [1]. Since then, the proliferation of wireless services, fierce competition, andthe emergenceof new service classes such as wireless data and multimediahave resulted in an ever increasing pressure on network operators to use resources in a moreefficient manner.In the contextof wireless networks,two of the most common resources are power and spectrum—and, due to regulations, these resources are typically scarce. Hence, in contrast to wired networks, overprovisioning is not feasible in wireless networks.
标签: Maximization Nonconvex Wireless Utility Systems in
上传时间: 2020-06-01
上传用户:shancjb
Wavelength division multiplexing (WDM) refers to a multiplexing and transmission scheme in optical telecommunications fibers where different wavelengths, typically emitted by several lasers, are modulated independently (i.e., they carry independent information from the transmitters to the receivers). These wavelengths are then multiplexed in the transmitter by means of passive WDM filters, and likewise they are separated or demultiplexed in the receiver by means of the same filters or coherent detection that usually involves a tunable local oscillator (laser).
标签: Multiplexing Wavelength Division
上传时间: 2020-06-01
上传用户:shancjb
M.NT68676.2A is a monitor control board, which is suitable for Asia-Pacific market. It can supportLED/LCD panels which resolution is up to 2048×1152.M.NT68676.2A can synchronize with computer automatically. Synchronization requires thesynchronous signal which horizontal and vertical sync are separated.M.NT68676.2A can support dynamic contrast control, headphone input and Digital volume controlsimultaneously.
标签: 乐华驱动板
上传时间: 2022-03-13
上传用户:kent