Gabor feature-based face recognItion using supervised locality preserving projection
标签: feature-based recognItion preserving projection
上传时间: 2017-09-04
上传用户:古谷仁美
Handwriting recognItion
上传时间: 2014-01-05
上传用户:1966640071
A Multimodal Pattern recognItion Framework for Speaker Detection
标签: recognItion Multimodal Framework Detection
上传时间: 2013-11-26
上传用户:caozhizhi
this is face recognItion document
标签: recognItion document this face
上传时间: 2017-09-27
上传用户:wpt
Speech recognItion using Neural Networks
标签: recognItion Networks Speech Neural
上传时间: 2013-12-25
上传用户:FreeSky
Using Radial Basis Probabilistic Neural Network for Speech recognItion
标签: Probabilistic recognItion Network Radial
上传时间: 2014-01-12
上传用户:fxf126@126.com
To describe Pattern recognItion using Machine Learning Method. It is good for one who want to learn machine learning.
标签: Pattern recognItion ML machine learning
上传时间: 2016-04-14
上传用户:shishi
Introduction to radar target recognItion,IET雷达目标识别电子书
标签: Introduction recognItion target radar to
上传时间: 2018-05-08
上传用户:icae0327
Pattern recognItion has its origins in engineering, whereas machine learning grew out of computer science. However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propa- gation. Similarly, new models based on kernels have had significant impact on both algorithms and applications.
标签: Bishop-Pattern-recognItion-and-Ma chine-Learning
上传时间: 2020-06-10
上传用户:shancjb
随着我国国民经济的高速发展,国内高速公路、城市道路、停车场建设越来越多,对交通控制、安全管理的要求也日益提高,智能交通系统( IntelligentTransportation Systems,简称ITS)已成为当前交通管理发展的主要方向,而车牌识别系统(License Plate recognItion System,简称LPRS)技术作为智能交通系统的核心,起着举足轻重的作用,可以被广泛地应用于高速公路自动收费(ElectronicToll Collection,简称ETC)、停车场安全管理、被盗车辆的追踪、车流统计等。 目前,车牌识别系统大多都是基于PC平台的,其优势是实现容易,但是成本高、实时性不强、稳定性不高等缺点使其不能广泛推广。为了克服以上的缺点,且满足识别速度和识别率的要求,本文在原有车牌识别硬件系统设计的基础上做了一定的改进(原系统在图像采集、接口通信、系统稳定、脱机工作等方面存在一定问题),与团队成员一起设计出了新的车牌识别硬件系统,采用单DSP+FPGA和双DSP+FPGA双板子的方式来共同实现(本人负责单DSP+FPGA的原理图和PCB绘制,另一成员负责双DSP+FPGA的原理图和PCB绘制)。 本文所涉及的该车牌硬件系统,主要工作由以下几个部分组成: 1.团队共同完成了新车牌识别系统的硬件设计,采用两个板子实现。其中,本人负责单DSP+FPGA板子绘制。 2.团队一起完成了整个系统的硬件电路调试。主要分为如下模块进行调试:电源,DSP,FPGA,SAA7113H视频解码器,LCD液晶显示和UART接口等。 3.负责完成了整个系统的DSP应用程序设计。采用DSP/BIOS操作系统来构建系统的框架,添加了多个任务对象进行管理系统的调度;用CSL编写了DSP上的底层驱动:完成了车牌识别算法在DSP上的移植与优化。 4.参与完成了部分FPGA程序的开发,主要包括图像采集、存储、传输几个模块等。 最终,本系统实现了高效、快速的车牌识别,各模块工作稳定,能脱机实现图像采集、传输、识别、结果输出和显示为一体化的功能;为以后进行高性能的车牌识别算法开发提供了一个很好的硬件平台。
上传时间: 2013-04-24
上传用户:slforest