非常好的优化算法的书,详细介绍了蚁群算法和粒子群算法以及相关的matlab工具箱,讲了理论和应用给出了工具箱的下载地址。 Swarm intelligence is an innovative computational way to solve hard problems. In particular, pARticle swarm optimization, also commonly known as PSO, mimics the behavior of a swarm of insects or a school of fish. If one of the pARticle discovers a good path to food the rest of the swarm will be able to follow instantly even if they are far away in the swarm. Swarm behavior is modeled by pARticles in multidimensional space that have two characteristics: a position and a velocity. These pARticles wander around the hyperspace and remember the best position that they have discovered. They communicate good positions to each other and adjust their own position and velocity based on these good positions.
标签: 优化算法
上传时间: 2014-01-26
上传用户:zgu489
% PURPOSE : Demonstrate the differences between the following filters on the same problem: % % 1) Extended Kalman Filter (EKF) % 2) Unscented Kalman Filter (UKF) % 3) pARticle Filter (PF) % 4) PF with EKF proposal (PFEKF) % 5) PF with UKF proposal (PFUKF)
标签: the Demonstrate differences following
上传时间: 2016-10-20
上传用户:wuyuying
无线传感器网络,粒子滤波,pARticle filter for sensor network
标签: 无线传感器网络
上传时间: 2016-11-14
上传用户:firstbyte
将PSO和LBG结合在一步迭代过程中,并使用pARticle-pair(PP)搜索问题空间的算法
上传时间: 2014-01-22
上传用户:zmy123
dysii is a C++ library for distributed probabilistic inference and learning in large-scale dynamical systems. It provides methods such as the Kalman, unscented Kalman, and pARticle filters and smoothers, as well as useful classes such as common probability distributions and stochastic processes.
标签: probabilistic distributed large-scale dynamical
上传时间: 2014-01-12
上传用户:wangdean1101
《Optimal State Estimation - Kalman, H Infinity, and Nonlinear Approaches》 一书的配套源码,包括了Kalman Filter、Hinf Filter、pARticle Filter等的Matlab源码
标签: Estimation Approaches Nonlinear Infinity
上传时间: 2013-12-20
上传用户:caozhizhi
evolution computing 现在最火的一篇论文 Handling Multiple Objectives With pARticle Swarm Optimization
上传时间: 2016-07-01
上传用户:白水煮瓜子
pARticle-swarm-optimization-PSO-for-MPPT-master
上传时间: 2017-03-11
上传用户:zosoong
在微电网调度过程中综合考虑经济、环境、蓄电池的 循环电量,建立多目标优化数学模型。针对传统多目标粒子 群算法(multi-objective pARticle swarm optimization,MOPSO) 的不足,提出引入模糊聚类分析的多目标粒子群算法 (multi-objective pARticle swarm optimization algorithm based on fuzzy clustering,FCMOPSO),在迭代过程中引入模糊聚 类分析来寻找每代的集群最优解。与 MOPSO 相比, FCMOPSO 增强了算法的稳定性与全局搜索能力,同时使优 化结果中 Pareto 前沿分布更均匀。在求得 Pareto 最优解集 后,再根据各目标的重要程度,用模糊模型识别从最优解集 中找出不同情况下的最优方案。最后以一欧洲典型微电网为 例,验证算法的有效性和可行性。
上传时间: 2019-11-11
上传用户:Dr.赵劲帅