求标准偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1
标签: gt myfunction function numel
上传时间: 2014-01-15
上传用户:hongmo
求标准偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1
标签: gt myfunction function numel
上传时间: 2013-12-26
上传用户:dreamboy36
求标准偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1
标签: gt myfunction function numel
上传时间: 2016-06-28
上传用户:change0329
求标准偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1
标签: gt myfunction function numel
上传时间: 2014-09-03
上传用户:jjj0202
两台处理机A 和B处理n个作业。设第i个作业交给机器 A 处理时需要时间ai,若由机器B 来处理,则需要时间bi。由于各作 业的特点和机器的性能关系,很可能对于某些i,有ai >=bi,而对于 某些j,j!=i,有aj<bj。既不能将一个作业分开由两台机器处理,也没 有一台机器能同时处理2 个作业。设计一个动态规划算法,使得这两 台机器处理完成这n 个作业的时间最短(从任何一台机器开工到最后 一台机器停工的总时间)。研究一个实例:(a1,a2,a3,a4,a5,a6)= (2,5,7,10,5,2);(b1,b2,b3,b4,b5,b6)=(3,8,4,11,3,4)
上传时间: 2014-01-14
上传用户:独孤求源
Euler函数: m = p1^r1 * p2^r2 * …… * pn^rn ai >= 1 , 1 <= i <= n Euler函数: 定义:phi(m) 表示小于等于m并且与m互质的正整数的个数。 phi(m) = p1^(r1-1)*(p1-1) * p2^(r2-1)*(p2-1) * …… * pn^(rn-1)*(pn-1) = m*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pn) = p1^(r1-1)*p2^(r2-1)* …… * pn^(rn-1)*phi(p1*p2*……*pn) 定理:若(a , m) = 1 则有 a^phi(m) = 1 (mod m) 即a^phi(m) - 1 整出m 在实际代码中可以用类似素数筛法求出 for (i = 1 i < MAXN i++) phi[i] = i for (i = 2 i < MAXN i++) if (phi[i] == i) { for (j = i j < MAXN j += i) { phi[j] /= i phi[j] *= i - 1 } } 容斥原理:定义phi(p) 为比p小的与p互素的数的个数 设n的素因子有p1, p2, p3, … pk 包含p1, p2…的个数为n/p1, n/p2… 包含p1*p2, p2*p3…的个数为n/(p1*p2)… phi(n) = n - sigm_[i = 1](n/pi) + sigm_[i!=j](n/(pi*pj)) - …… +- n/(p1*p2……pk) = n*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pk)
上传时间: 2014-01-10
上传用户:wkchong
//Euler 函数前n项和 /* phi(n) 为n的Euler原函数 if( (n/p) % i == 0 ) phi(n)=phi(n/p)*i else phi(n)=phi(n/p)*(i-1) 对于约数:divnum 如果i|pr[j] 那么 divnum[i*pr[j]]=divsum[i]/(e[i]+1)*(e[i]+2) //最小素因子次数加1 否则 divnum[i*pr[j]]=divnum[i]*divnum[pr[j]] //满足积性函数条件 对于素因子的幂次 e[i] 如果i|pr[j] e[i*pr[j]]=e[i]+1 //最小素因子次数加1 否则 e[i*pr[j]]=1 //pr[j]为1次 对于本题: 1. 筛素数的时候首先会判断i是否是素数。 根据定义,当 x 是素数时 phi[x] = x-1 因此这里我们可以直接写上 phi[i] = i-1 2. 接着我们会看prime[j]是否是i的约数 如果是,那么根据上述推导,我们有:phi[ i * prime[j] ] = phi[i] * prime[j] 否则 phi[ i * prime[j] ] = phi[i] * (prime[j]-1) (其实这里prime[j]-1就是phi[prime[j]],利用了欧拉函数的积性) 经过以上改良,在筛完素数后,我们就计算出了phi[]的所有值。 我们求出phi[]的前缀和 */
上传时间: 2016-12-31
上传用户:gyq
Visual 开发 希望对你们有帮助 public static int Rom(int n, int m)//双寄或双偶 { int count = 0 //第一排Y坐标上要几个 if (n < m) { for (int i = 1 i <= n i = i + 2) { count++ } } else { for (int j = 1 j <= m j = j + 2) { count++ } } return count }
上传时间: 2013-12-13
上传用户:懒龙1988
设有由n个不相同的整数组成的数列,记为: a(1)、a(2)、……、a(n)且a(i)<>a(j) (i<>j) 例如3,18,7,14,10,12,23,41,16,24。 若存在i1<i2<i3< … < ie 且有a(i1)<a(i2)< … <a(ie)则称为长度为e的不下降序列。如上例中3,18,23,24就是一个长度为4的不下降序列,同时也有3,7,10,12,16,24长度为6的不下降序列。程序要求,当原数列给出之后,求出最长的不下降序列。
上传时间: 2013-12-14
上传用户:tonyshao
c++ Ngô n ngữ C cho vi đ iề u khiể n Các tài liệ u tham khả o, ebook. Programming Microcontrollers in C (Ted Van Sickle) C Programming for Microcontrollers (Joe Pardue SmileyMicros.com ) Programming 16-Bit PIC Microcontrollers in C (Jucio di jasio ) C Programming for AVR Programming embedded system I,II (Michael J . Pont ) ( các tài liệ u này đ ã down load về )
上传时间: 2017-07-29
上传用户:坏坏的华仔