1. Using power method to find the eigenvalue with maximum modulus and its eigenvector for the following matrixes
标签: eigenvector eigenvalue the maximum
上传时间: 2014-01-05
上传用户:kytqcool
Analytical constant-modulus algorithm, to separate linear combinations of CM sourcesThe algorithm is robust in the presence of noise, and is tested on measured data, collected from an experimental set-up.
标签: algorithm constant-modulus combinations Analytical
上传时间: 2016-02-17
上传用户:ayfeixiao
3D depth estimation for visual inspection using wavelet transform modulus maxima
标签: estimation inspection transform modulus
上传时间: 2016-03-28
上传用户:6546544
97 law to enhance the classic procedure Ridge wavelet extraction modulus maximum for the wavelet edge detection Small spectral analysis method mallat classic procedure
标签: wavelet extraction the procedure
上传时间: 2014-01-09
上传用户:xg262122
Medical image fusion by wavelet transform modulus maxima,医学图像融合
标签: transform Medical wavelet modulus
上传时间: 2017-01-23
上传用户:wff
盲自适应算法--递推最小二乘恒模算法Recursive Least Squares Constant modulus Algorithm for Blind Adaptive Array
标签: Recursive Algorithm Constant Adaptive
上传时间: 2014-06-30
上传用户:helmos
Tis is the code for constant modulus algorithm for blind equalization
标签: equalization algorithm for constant
上传时间: 2014-02-12
上传用户:225588
counter of modulus 10 with LED
上传时间: 2017-08-19
上传用户:haohaoxuexi
C# BigInteger class. BigInteger.cs is a csharp program. It is the BIgInteger class. It has methods: abs() , FermatLittleTest(int confidence) ,gcd(BigInteger bi) , genCoPrime(int bits, Random rand) , genPseudoPrime(int bits, int confidence, Random rand) , genRandomBits(int bits, Random rand) , isProbablePrime(int confidence) , isProbablePrime() , Jacobi(BigInteger a, BigInteger b) , LucasSequence(BigInteger P, BigInteger Q, BigInteger k, BigInteger n) ,max(BigInteger bi) , min(BigInteger bi) , modInverse(BigInteger modulus) , RabinMillerTest(int confidence) ,
标签: BigInteger class BIgInteger program
上传时间: 2013-12-23
上传用户:ynzfm
Fast settling-time added to the already conflicting requirements of narrow channel spacing and low phase noise lead to Fractional4 divider techniques for PLL synthesizers. We analyze discrete "beat-note spurious levels from arbitrary modulus divide sequences including those from classic accumulator methods.
标签: settling-time requirements conflicting already
上传时间: 2016-04-14
上传用户:liansi