语音识别是通过识别和理解过程把人类的语音信号转变为文本或命令的技术。近年来语音识别技术由于其重要性和研究难度成为研究的热点。随着嵌入式的发展,嵌入式语音识别技术成为语音识别领域发展的新的重要方向。 在此背景下,本课题进行基于ARM的嵌入式语音识别系统的研究。论文分别从理论分析、系统硬件平台的总体设计、系统软件的分析定制等方面,对语音识别在ARM上的应用做了研究。 1、在理论上,详细介绍了语音识别的发展历史与研究现状;具体阐述语音识别技术的基本原理和主要研究方法,并推导了语音识别技术中最常用到的两种算法DTW和HMM的数学模型,为进一步的语音识别研究打下基础。 2、在硬件平台方面,本文分析设计了语音识别系统的总体方案,主要包括以下三部分:语音识别系统的控制部分、语音的输入输出部分以及语音程序的存储部分;文中详细介绍了各部分的作用以及它们之间的连接方式,此外根据实际需要,选择确定了语音芯片等外围电路芯片的型号并扩展了外围电路。 3、在系统软件选择定制方面,不仅要求各部分自身功能完善,能够满足本课题的需求,而且要求各部分相互之间满足一定的兼容性,即定制的系统具有稳定性,可以有效的工作。考虑到以上的因素,本课题针对特定的语音识别系统的需求,对交叉编译环境、U-boot、内核、根文件系统等均进行了量身定制。最终选用Crosstool来制作专门编译Linux-2.6.22.6的交叉编译工具;选用比较稳定的支持tftp下载的u-boot-1.2.0作为引导程序;选用Linux-2.6.22.6作为嵌入式操作系统内核,并对其进行剪裁定制,特别是增加了UDA1341TS音频驱动和网卡驱动部分;选用了带有mdev功能的busybox-1.9.1来制作根文件系统。 在以上三方面的基础上,本课题对语音识别程序系统进行了实验研究。实验包括音频驱动、语音录制、语音训练、语音识别程序的编译以及语音识别等程序在ARM上的移植。 最后,本论文采用DTW模型,完成了语音模板的训练和语音识别的任务。经过实验测试,该系统有效完成了预期的语音识别任务。
标签:
ARM
嵌入式
语音识别
系统研究
上传时间:
2013-05-30
上传用户:wsx123