Analysis of GPS data frame The design of the following four main data collection format: GPGGA (location information), GPRMC (Recommended Minimum location information), GPVTG (ground speed information), PGRME (forecast error message)
标签: data collection following Analysis
上传时间: 2017-09-25
上传用户:onewq
The object detector described below has been initially proposed by P.F. Felzenszwalb in [Felzenszwalb2010]. It is based on a Dalal-Triggs detector that uses a single filter on histogram of oriented gradients (HOG) features to represent an object category. This detector uses a sliding window approach, where a filter is applied at all positions and scales of an image. The first innovation is enriching the Dalal-Triggs model using a star-structured part-based model defined by a “root” filter (analogous to the Dalal-Triggs filter) plus a set of parts filters and associated deformation models. The score of one of star models at a particular position and scale within an image is the score of the root filter at the given location plus the sum over parts of the maximum, over placements of that part, of the part filter score on its location minus a deformation cost easuring the deviation of the part from its ideal location relative to the root. Both root and part filter scores are defined by the dot product between a filter (a set of weights) and a subwindow of a feature pyramid computed from the input image. Another improvement is a representation of the class of models by a mixture of star models. The score of a mixture model at a particular position and scale is the maximum over components, of the score of that component model at the given location.
标签: 计算机视觉
上传时间: 2015-03-15
上传用户:sb_zhang
Computational models are commonly used in engineering design and scientific discovery activities for simulating complex physical systems in disciplines such as fluid mechanics, structural dynamics, heat transfer, nonlinear structural mechanics, shock physics, and many others. These simulators can be an enormous aid to engineers who want to develop an understanding and/or predictive capability for complex behaviors typically observed in the corresponding physical systems. Simulators often serve as virtual prototypes, where a set of predefined system parameters, such as size or location dimensions and material properties, are adjusted to improve the performance of a system, as defined by one or more system performance objectives. Such optimization or tuning of the virtual prototype requires executing the simulator, evaluating performance objective(s), and adjusting the system parameters in an iterative, automated, and directed way. System performance objectives can be formulated, for example, to minimize weight, cost, or defects; to limit a critical temperature, stress, or vibration response; or to maximize performance, reliability, throughput, agility, or design robustness. In addition, one would often like to design computer experiments, run parameter studies, or perform uncertainty quantification (UQ). These approaches reveal how system performance changes as a design or uncertain input variable changes. Sampling methods are often used in uncertainty quantification to calculate a distribution on system performance measures, and to understand which uncertain inputs contribute most to the variance of the outputs. A primary goal for Dakota development is to provide engineers and other disciplinary scientists with a systematic and rapid means to obtain improved or optimal designs or understand sensitivity or uncertainty using simulationbased models. These capabilities generally lead to improved designs and system performance in earlier design stages, alleviating dependence on physical prototypes and testing, shortening design cycles, and reducing product development costs. In addition to providing this practical environment for answering system performance questions, the Dakota toolkit provides an extensible platform for the research and rapid prototyping of customized methods and meta-algorithms
标签: Optimization and Uncertainty Quantification
上传时间: 2016-04-08
上传用户:huhu123456
This report presents a tutorial of fundamental array processing and beamforming theory relevant to microphone array speech processing. A microphone array consists of multiple microphones placed at different spatial locations. Built upon a knowledge of sound propagation principles, the multiple inputs can be manipulated to enhance or attenuate signals emanating from particular directions. In this way, microphone arrays provide a means of enhancing a desired signal in the presence of corrupting noise sources. Moreover, this enhancement is based purely on knowledge of the source location, and so microphone array techniques are applicable to a wide variety of noise types. Microphone arrays have great potential in practical applications of speech processing, due to their ability to provide both noise robustness and hands-free signal acquisition.
标签: Microphone array Tutorial Array Signal Processing
上传时间: 2016-06-12
上传用户:halias
asp实现限制一个ip只能访问一次的方法 <% '///////////////////////////////////////////////////// '// // '//作用:一个IP地址只允许访问本页一次 // '//引用:<!-- #include file="Check_Ip.asp" --> // '// // '///////////////////////////////////////////////////// 'Response.Charset = 936 '设置输出编码为简体中文 'Response.Buffer = false '关闭缓冲区 Dim Fso,ts,IpList,Cfs '设置Cookies函数 Function SetCookie() Response.Cookies("IsBrow") = "Brow" Response.Cookies("IsBrow").Expires = Date+365 End Function '记录IP地址函数 Function WriteIp(FileName, IpAddress) Set Fso = Server.CreateObject("Scripting.FileSystemObject") Set ts = Fso.OpenTextFile(Server.MapPath(FileName),8,true) ts.WriteLine IpAddress ts.Close Set ts = Nothing Set Fso = Nothing End Function '读取IP地址函数 Function ReadIpList(FileName) Set Fso = Server.CreateObject("Scripting.FileSystemObject") If Not Fso.FileExists(Server.MapPath(FileName)) Then CreateFile("Iplist.txt") Exit Function End If Set ts = Fso.OpenTextFile(Server.MapPath(FileName)) Iplist = ts.ReadAll ts.Close Set ts = Nothing Set Fso = Nothing ReadIpList = Iplist End Function '创建文件函数 Function CreateFile(FileName) Set Fso = Server.CreateObject("Scripting.FileSystemObject") Set Cfs = Fso.CreateTextFile(Server.MapPath(FileName)) Cfs.Close Set Cfs = Nothing Set Fso = Nothing End Function '关闭当前IE窗口函数(注:IE6下通过,其他浏览器未测试) Function CloseWindow() 'Response.Write "<script>window.location='javascript:window.opener=null;window.close();'</script>" Response.Redirect "http://www.baidu.com" End Function Ip = Request.ServerVariables("REMOTE_ADDR") '获取浏览者IP地址 Cookie = Request.Cookies("IsBrow") '获取当前Cookies 'Response.Write Cookie If Request.ServerVariables("HTTP_X_FORWARDED_FOR") <> "" Then Response.Write "本站不允许使用代理访问" Response.End() Else If Cookie = "Brow" Then CloseWindow() Else If Instr(ReadIpList("Iplist.txt"),Ip) <>0 Then CloseWindow() Else WriteIp "Iplist.txt" , Ip End If SetCookie() End If End If %>
上传时间: 2016-07-14
上传用户:helei0915
We consider the problem of target localization by a network of passive sensors. When an unknown target emits an acoustic or a radio signal, its position can be localized with multiple sensors using the time difference of arrival (TDOA) information. In this paper, we consider the maximum likelihood formulation of this target localization problem and provide efficient convex relaxations for this nonconvex optimization problem.We also propose a formulation for robust target localization in the presence of sensor location errors. Two Cramer-Rao bounds are derived corresponding to situations with and without sensor node location errors. Simulation results confirm the efficiency and superior performance of the convex relaxation approach as compared to the existing least squares based approach when large sensor node location errors are present.
标签: 传感器网络
上传时间: 2016-11-27
上传用户:xxmluo
Mobile communication devices like smart phones or tablet PCs enable us to consume information at every location and at every time. The rapid development of new applications and new services and the demand to access data in real time create an increasing throughput demand. The data have to be transmitted reliably to ensure the desired quality of service. Furthermore, an improved utilization of the bandwidth is desired to reduce the cost of transmission.
标签: Architectures Processing Baseband Signal for
上传时间: 2020-05-26
上传用户:shancjb
Mobile wireless communications are in constant evolution due to the continu- ously increasing requirements and expectations of both users and operators. Mass multimedia* services have been for a long time expected to generate a large amount of data traffic in future wireless networks [1]. Mass multimedia services are, by definition, purposed for many people. In general, it can be distinguished between the distribution of any popular content over a wide area and the distribu- tion of location-dependent information in highly populated areas. Representative examples include the delivery of live video streaming content (like sports compe- titions, concerts, or news) and file download (multimedia clips, digital newspa- pers, or software updates).
标签: Broadcasting Generation Mobile Next
上传时间: 2020-05-31
上传用户:shancjb
The use of mobile devices now surpasses that of traditional computers: wireless users will hence soon be demanding the same rich multimedia services on their mobile devices that they have on their desktop personal computers. In addition, new services will be added, especially related with their mobile needs, such as location-based information services.
标签: Communications Technology Wireless Trends in
上传时间: 2020-06-01
上传用户:shancjb
Electric distribution networks are critical parts of power delivery systems. In recent years, many new technologies and distributed energy resources have been inte- grated into these networks. To provide electricity at the possible lowest cost and at required quality, long-term planning is essential for these networks. In distribution planning, optimal location and size of necessary upgrades are determined to satisfy the demand and the technical requirements of the loads and to tackle uncertainties associated with load and distributed energy resources.
标签: Distribution Electric Planning Network
上传时间: 2020-06-07
上传用户:shancjb