The AVRcam source files were built using the WinAVR distribution (version 3.3.1 of GCC). I haven t tested other versions of GCC, but they should compile without too much difficulty. * The source files for the AVRcam had the author name and copyright information added back into them after the judging of the project, since it states in the competition rules that the author s name can not be present during their inspection. * The included source files are the ones that were submitted for the entry into the Circuit Cellar contest. I have continued to develop the AVRcam, and have added several new features (such as ignoring objects that aren t larger than a minimum size, removing tracked objects that overlap with each, and some general optimizations). If you are interested in the latest source, email me at john@jrobot.net * For more info about the AVRcam, check out http://www.jrobot.net John Orlando August 20, 2004
标签: distribution version AVRcam source
上传时间: 2016-12-30
上传用户:GavinNeko
Euler函数: m = p1^r1 * p2^r2 * …… * pn^rn ai >= 1 , 1 <= i <= n Euler函数: 定义:phi(m) 表示小于等于m并且与m互质的正整数的个数。 phi(m) = p1^(r1-1)*(p1-1) * p2^(r2-1)*(p2-1) * …… * pn^(rn-1)*(pn-1) = m*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pn) = p1^(r1-1)*p2^(r2-1)* …… * pn^(rn-1)*phi(p1*p2*……*pn) 定理:若(a , m) = 1 则有 a^phi(m) = 1 (mod m) 即a^phi(m) - 1 整出m 在实际代码中可以用类似素数筛法求出 for (i = 1 i < MAXN i++) phi[i] = i for (i = 2 i < MAXN i++) if (phi[i] == i) { for (j = i j < MAXN j += i) { phi[j] /= i phi[j] *= i - 1 } } 容斥原理:定义phi(p) 为比p小的与p互素的数的个数 设n的素因子有p1, p2, p3, … pk 包含p1, p2…的个数为n/p1, n/p2… 包含p1*p2, p2*p3…的个数为n/(p1*p2)… phi(n) = n - sigm_[i = 1](n/pi) + sigm_[i!=j](n/(pi*pj)) - …… +- n/(p1*p2……pk) = n*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pk)
上传时间: 2014-01-10
上传用户:wkchong
//Euler 函数前n项和 /* phi(n) 为n的Euler原函数 if( (n/p) % i == 0 ) phi(n)=phi(n/p)*i else phi(n)=phi(n/p)*(i-1) 对于约数:divnum 如果i|pr[j] 那么 divnum[i*pr[j]]=divsum[i]/(e[i]+1)*(e[i]+2) //最小素因子次数加1 否则 divnum[i*pr[j]]=divnum[i]*divnum[pr[j]] //满足积性函数条件 对于素因子的幂次 e[i] 如果i|pr[j] e[i*pr[j]]=e[i]+1 //最小素因子次数加1 否则 e[i*pr[j]]=1 //pr[j]为1次 对于本题: 1. 筛素数的时候首先会判断i是否是素数。 根据定义,当 x 是素数时 phi[x] = x-1 因此这里我们可以直接写上 phi[i] = i-1 2. 接着我们会看prime[j]是否是i的约数 如果是,那么根据上述推导,我们有:phi[ i * prime[j] ] = phi[i] * prime[j] 否则 phi[ i * prime[j] ] = phi[i] * (prime[j]-1) (其实这里prime[j]-1就是phi[prime[j]],利用了欧拉函数的积性) 经过以上改良,在筛完素数后,我们就计算出了phi[]的所有值。 我们求出phi[]的前缀和 */
上传时间: 2016-12-31
上传用户:gyq
(一) 求a~b 之间各个数的约数个数之和。(其中包括a和b在内) ans = sigma(f(i)) , (a <= i <= b) , 其中f(i)表示i的约数的个数
上传时间: 2016-12-31
上传用户:daoxiang126
译原理大作业。C语言编译器的实现。附大作业的doc文档说明部分。 [编译原理豪华版程序.rar] - 编译原理豪华版程序用VC++编写 [附录I Little C解释程序源代码.rar] - Little C解释程序
上传时间: 2013-12-26
上传用户:上善若水
基于ARM7嵌入式系统中GU I的设计研究,对如何在arm中实现gui移植,有指导作用。
上传时间: 2014-01-10
上传用户:plsee
本文介绍一种用单片机普通I/O 口实现串行通信的方法
上传时间: 2014-01-22
上传用户:天诚24
CODE OF NSGA,I hope that it will help you,thank you~
上传时间: 2017-01-02
上传用户:wpt
I want to provide an example file system driver for Windows NT/2000/XP. For some time I have worked on an implementation of RomFs. RomFs is a small filesystem originally implemented in Linux, because of its simple disk layout its a good choice for an example driver. The current status is a working read-only driver that supports caching of file data, the create functionallity still needs some work but I m releasing it due to the high public demand.
标签: provide Windows example driver
上传时间: 2013-12-19
上传用户:zsjzc
if you want to it you can download and i m a student,this is a paper,I m wish it can help you.
上传时间: 2014-01-16
上传用户:气温达上千万的