常用的说话人识别方法有模板匹配法、统计建模法、联接主义法(即人工神经网络实现)。考虑到数据量、实时性以及识别率的问题,采用基于矢量量化和隐马尔可夫模型(hmm)相结合的方法。 说话人识别的系统主要由语音特征矢量提取单元(前端处理)、训练单元、识别单元和后处理单元组成,
上传时间: 2014-07-08
上传用户:wqxstar
这是书上的常用算法和模型介绍,有BP网络的C语言实现,hmm的C语言实现,失量量化的C语言实现。
上传时间: 2016-10-27
上传用户:luopoguixiong
《matlab扩展编程》光盘资料.关于端点检测,录音,参数提取,hmm,LPC,MFCC,DYW等一些源代码
上传时间: 2013-12-18
上传用户:hongmo
哈工大博士论文,基于hmm和ANN的汉语语音识别。
标签: 论文
上传时间: 2013-12-29
上传用户:225588
详细介绍了隐马尔科夫链的原理和matlab代码实现,可以运行其中的demo了解hmm的工作原理
上传时间: 2013-12-27
上传用户:love_stanford
隐含马尔可夫模型的入门资料,stanford机器学习课程资料 Introduction to the hmm model.
标签: 马尔可夫模型
上传时间: 2017-09-04
上传用户:huangld
这是一个模型介绍和常用算法的C语言的实现,包过hmm算法,BP神经网络解决异或问题~~
上传时间: 2013-11-25
上传用户:duoshen1989
基于MATLAB的孤立词语音识别系统分析,可以参考一下
标签: 孤立字
上传时间: 2015-03-31
上传用户:王金栋888
隐马尔科夫模型压缩包。。。隐马尔科夫模型的离散形式及连续形式的实现。。。
标签: hmm
上传时间: 2016-03-03
上传用户:dsgadgad
This paper presents a Hidden Markov Model (hmm)-based speech enhancement method, aiming at reducing non-stationary noise from speech signals. The system is based on the assumption that the speech and the noise are additive and uncorrelated. Cepstral features are used to extract statistical information from both the speech and the noise. A-priori statistical information is collected from long training sequences into ergodic hidden Markov models. Given the ergodic models for the speech and the noise, a compensated speech-noise model is created by means of parallel model combination, using a log-normal approximation. During the compensation, the mean of every mixture in the speech and noise model is stored. The stored means are then used in the enhancement process to create the most likely speech and noise power spectral distributions using the forward algorithm combined with mixture probability. The distributions are used to generate a Wiener filter for every observation. The paper includes a performance evaluation of the speech enhancer for stationary as well as non-stationary noise environment.
标签: Telecommunications Processing Signal for
上传时间: 2020-06-01
上传用户:shancjb