溫度華氏轉變攝氏 #include <stdio.h> #include <stdlib.h> enum x {A,B,C,D,E} int main(void) { int a=73,b=85,c=66 { if (a>=90) printf("a=A等級!!\n") else if (a>=80) printf("73分=B等級!!\n") else if (a>=70) printf("73分=C等級!!\n") else if (a>=60) printf("73分=D等級!!\n") else if (a<60) printf("73分=E等級!!\n") } { if (b>=90) printf("b=A等級!!\n") else if (b>=80) printf("85分=B等級!!\n") else if (b>=70) printf("85分=C等級!!\n") else if (b>=60) printf("85分=D等級!!\n") else if (b<60) printf("85分=E等級!!\n") } { if (c>=90) printf("c=A等級!!\n") else if (c>=80) printf("66分=B等級!!\n") else if (c>=70) printf("66分=C等級!!\n") else if (c>=60) printf("66分=D等級!!\n") else if (c<60) printf("66分=E等級!!\n") } system("pause") return 0 }
上传时间: 2013-12-12
上传用户:亚亚娟娟123
VK元泰原厂LED的面板驱动产品主要应用于段式和点阵式LED的显示驱动包括但不局限以下产品: 仪表显示、大小家电、标志牌、健身器材显示面板等,同时涉及显示器控制器、双斜率与显示驱动ADC及显示器驱动计数器相关产品,产品具备显示、背光、按键扫描、单线、两线及三线通讯等不同特色。LED面板显示驱动控制芯片/段式和点阵式LED显示驱动专家。样品免费,大量原装现货!欢迎加Q索取产品PDF资料。 VK元泰原厂LED显示屏驱动主要大量应用于以下这些产品简介: 1:VCR、VCD、DVD 及家庭影院等产品的显示屏驱动。 2:电磁炉、微波炉、冰箱、空调 、家庭影院等产品的高段位显示屏驱动。 3:电子产品LED显示屏驱动,电子秤及小家电产品的显示屏驱动。 4:机顶盒、各种家电设备、智能电表等数码管、多段位显示屏驱动 VK1628概述 VK1628 是 1/5~1/8 占空比的 LED 显示控制驱动电路。由 10 根段输出、4 根栅输出、3 根段/栅输出,1 个显示存储器、控制电路、键扫描电路组成了一个高可靠性的单片机外围 LED 驱动电路。串行数据通过4线串行接口输入到 VK1628采用 SOP28 的封装形式。 通讯接口:STB/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:70/52 共阴驱动:10段7位/13段4位 共阳驱动:7段10位 按键:10x2 封装SOP28 VK1629A概述 VK1629A 是LED(发光二极管显示器)驱动控制专用电路,内部集成有MCU 数字接口、数据锁存器、LED 高压驱动等电路。主要应用于冰箱、空调、家庭影院等产品的高段位显示屏驱动。 通讯接口:STB/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:128 共阴驱动:16段8位 共阳驱动:8段16位 按键:--- 封装SOP32 VK1629B概述 VK1629B 是 LED(发光二极管显示器)驱动控制专用电路,内部集成有 MCU 数字接口、数据锁存器、键盘扫描、LED 高压驱动等电路。主要应用于冰箱、空调、家庭影院等产品的高段位显示屏驱动。 通讯接口:STB/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:112 共阴驱动:14段8位 共阳驱动:8段14位 按键:8x2 封装SOP32 VK1629C 概述 VK1629C 是带键盘扫描接口的 LED(发光二极管显示器)驱动控制专用电路,内部集成有 MCU 数字接口、数据锁存器、LED 高压驱动、键盘扫描等电路。主要应用于冰箱、空调、家庭影院等产品的高段位显示屏驱动。 通讯接口:STB/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:120 共阴驱动:15段8位 共阳驱动:8段15位 按键:8x1 封装SOP32 VK1629D 概述 VK1629D 是 LED(发光二极管显示器)驱动控制专用电路,内部集成有 MCU 数字接口、数据锁存器、LED 高压驱动等电路。主要应用于冰箱、空调、家庭影院等产品的高段位显示屏驱动。 通讯接口:STB/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:96 共阴驱动:12段8位 共阳驱动:8段12位 按键:8x4 封装SOP32 VK1640 概述 VK1640 是一款 LED(发光二极管显示器)驱动控制专用电路,内部集成有 MCU 数字接口、数据锁存器、LED 高压驱动。本产品采用 CMOS 工艺,主要应用于小型 LED 显示屏驱动。 通讯接口: CLK/DIN 电源电压:5V(4.5~5.5V) 驱动点阵:128 共阴驱动:8段16位 共阳驱动:16段8位 按键:--- 封装SOP28 VK1640B概述 ----- SSOP24 超小封装体积方便开发设计,更低成本单价! VK1640B 是一款 LED(发光二极管显示器)驱动控制专用电路,内部集成有 MCU 数字接口、 数据锁存器、LED 高压驱动。本产品采用 CMOS 工艺,主要应用于小型 LED 显示屏驱动。 通讯接口: CLK/DIN 电源电压:5V(4.5~5.5V) 驱动点阵:96 共阴驱动:8段12位 共阳驱动:12段8位【封装小,价格低】封装SSOP24 VK1650概述 VK1650 是一种带键盘扫描电路接口的 LED 驱动控制专用电路。内部集成有 MCU 输入输出控制数字接口、数据锁存器、LED 驱动、键盘扫描、辉度调节等电路。本芯片性能稳定、质量可靠、抗干扰能力强,可适应于 24 小时长期连续工作的应用场合。 通讯接口: SCL/SDA 电源电压:5V(3.0~5.5V) 驱动点阵:8x16 共阴驱动:8段4位 共阳驱动:4段8位 按键:7x4 封装SOP16/DIP16 VK1651概述 VK1651 是一种带键盘扫描接口的 LED(发光二极管显示器)驱动控制专用电路,内部集成有 MCU 数字接口、数据锁存器、LED 高压驱动、键盘扫描等电路。本产品性能优良,质量可靠。主要应用于电磁炉。微波炉及小家电产品的显示屏驱动。 通讯接口: SCL/SDA 电源电压:5V(3.0~5.5V) 驱动点阵:8x14 共阴驱动:7段4位 共阳驱动:4段7位 按键:7x4 封装SOP16/DIP16 VK1668概述 VK1668 是 1/5~1/8 占空比的 LED 显示控制驱动电路。由 10 根段输出、4 根栅输出、3 根段/栅输出,1 个显示存储器、控制电路、键扫描电路组成了一个高可靠性的单片机外围 LED 驱动电路。串行数据通过4线串行接口输入到 VK1668采用 SOP24 的封装形式。 通讯接口:STB/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:70/52 共阴驱动:10段7位/13段4位 共阳驱动:7段10位 按键:10x2 封装SOP24 VK6932概述 VK6932 是一款 LED(发光二极管显示器)驱动控制专用电路,内部集成有 MCU 数字接口、数据锁存器、LED 高压驱动。本产品采用 CMOS 工艺,主要应用于 LED 显示屏驱动。 通讯接口:STB/CLK/DIN 电源电压:5V(4.5~5.5V) 驱动点阵:128 共阴驱动:8段16位17.5/140mA 共阳驱动:16段8位 按键:--- 封装SOP32 VK16K33 概述 --- RAM映射16*8 LED控制器驱动器,带按键控制 VK16K33是一个内存映射和多功能LED控制器驱动程序。最大显示设备中的段是128个模式(16个SEG 和 8个COM),矩阵键为13*3(最大值)。扫描路。VK16K33的软件配置特点使其适用于多个LED应用包括LED模块和显示子系统。VK16K33与大多数微控制器兼容,并且通过双线双向I2c总线进行通信。 内存映射的LED控制器及驱动器 通讯接口:SCL/SDA 电源电压:5V(4.5V~5.5V) 驱动点阵:128/96/64 共阴驱动:16段8位/12段8位/8段8位 共阳驱动:8段16位/8段12位/8段8位 LCD/LED液晶控制器及驱动器系列 芯片简介如下: RAM映射LCD控制器和驱动器系列 VK1024B 2.4V~5.2V 6seg*4com 6*3 6*2 偏置电压1/2 1/3 S0P-16 VK1056B 2.4V~5.2V 14seg*4com 14*3 14*2 偏置电压1/2 1/3 SOP-24/SSOP-24 VK1072B 2.4V~5.2V 18seg*4com 18*3 18*2 偏置电压1/2 1/3 SOP-28 VK1072C 2.4V~5.2V 18seg*4com 18*3 18*2 偏置电压1/2 1/3 SOP-28 VK1088B 2.4V~5.2V 22seg*4com 22*3 偏置电压1/2 1/3 QFN-32L(4MM*4MM) VK0192 2.4V~5.2V 24seg*8com 偏置电压1/4 LQFP-44 VK0256 2.4V~5.2V 32seg*8com 偏置电压1/4 QFP-64 VK0256B 2.4V~5.2V 32seg*8com 偏置电压1/4 LQFP-64 VK0256C 2.4V~5.2V 32seg*8com 偏置电压1/4 LQFP-52 VK1621S-1 2.4V~5.2V 32*4 32*3 32*2 偏置电压1/2 1/3 LQFP44/48/SSOP48/SKY28/DICE裸片 VK1622B 2.7V~5.5V 32seg*8com 偏置电压1/4 LQFP-48 VK1622S 2.7V~5.5V 32seg*8com 偏置电压1/4 LQFP44/48/52/64/QFP64/DICE裸片 VK1623S 2.4V~5.2V 48seg*8com 偏置电压1/4 LQFP-100/QFP-100/DICE裸片 VK1625 2.4V~5.2V 64seg*8com 偏置电压1/4 LQFP-100/QFP-100/DICE VK1626 2.4V~5.2V 48seg*16com 偏置电压1/5 LQFP-100/QFP-100/DICE (高品质 高性价比:液晶显示驱动IC 原厂直销 工程技术支持!) (所有型号全部封装均有现货,欢迎加Q查询 191 888 5898 许生) 高抗干扰LCD液晶控制器及驱动系列 VK2C21A 2.4~5.5V 20seg*4com 16*8 偏置电压1/3 1/4 I2C通讯接口 SOP-28 VK2C21B 2.4~5.5V 16seg*4com 12*8 偏置电压1/3 1/4 I2C通讯接口 SOP-24 VK2C21C 2.4~5.5V 12seg*4com 8*8 偏置电压1/3 1/4 I2C通讯接口 SOP-20 VK2C21D 2.4~5.5V 8seg*4com 4*8 偏置电压1/3 1/4 I2C通讯接口 NSOP-16 VK2C22A 2.4~5.5V 44seg*4com 偏置电压1/2 1/3 I2C通讯接口 LQFP-52 VK2C22B 2.4~5.5V 40seg*4com 偏置电压1/2 1/3 I2C通讯接口 LQFP-48 VK2C23A 2.4~5.5V 56seg*4com 52*8 偏置电压1/3 1/4 I2C通讯接口 LQFP-64 VK2C23B 2.4~5.5V 36seg*8com 偏置电压1/3 1/4 I2C通讯接口 LQFP-48 VK2C24 2.4~5.5V 72seg*4com 68*8 60*16 偏置电压1/3 1/4 1/5 I2C通讯接口 LQFP-80 超低功耗LCD液晶控制器及驱动系列 VKL060 2.5~5.5V 15seg*4com 偏置电压1/2 1/3 I2C通讯接口 SSOP-24 VKL128 2.5~5.5V 32seg*4com 偏置电压1/2 1/3 I2C通讯接口 LQFP-44 VKL144A 2.5~5.5V 36seg*4com 偏置电压1/2 1/3 I2C通讯接口 TSSOP-48 VKL144B 2.5~5.5V 36seg*4com 偏置电压1/2 1/3 I2C通讯接口 QFN48L (6MM*6MM) 静态显示LCD液晶控制器及驱动系列 VKS118 2.4~5.2V 118seg*2com 偏置电压 -- 4线通讯接口 LQFP-128 VKS232 2.4~5.2V 116seg*2com 偏置电压1/1 1/2 4线通讯接口 LQFP-128 内存映射的LED控制器及驱动器 VK1628 --- 通讯接口:STB/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:70/52 共阴驱动:10段7位/13段4位 共阳驱动:7段10位 按键:10x2 封装SOP28 VK1629 --- 通讯接口:STB/CLK/DIN/DOUT 电源电压:5V(4.5~5.5V) 驱动点阵:128 共阴驱动:16段8位 共阳驱动:8段16位 按键:8x4 封装QFP44 VK1629A --- 通讯接口:STB/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:128 共阴驱动:16段8位 共阳驱动:8段16位 按键:--- 封装SOP32 VK1629B --- 通讯接口:STB/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:112 共阴驱动:14段8位 共阳驱动:8段14位 按键:8x2 封装SOP32 VK1629C --- 通讯接口:STB/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:120 共阴驱动:15段8位 共阳驱动:8段15位 按键:8x1 封装SOP32 VK1629D --- 通讯接口:STB/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:96 共阴驱动:12段8位 共阳驱动:8段12位 按键:8x4 封装SOP32 VK1640 --- 通讯接口: CLK/DIN 电源电压:5V(4.5~5.5V) 驱动点阵:128 共阴驱动:8段16位 共阳驱动:16段8位 按键:--- 封装SOP28 VK1650 --- 通讯接口: SCL/SDA 电源电压:5V(3.0~5.5V) 驱动点阵:8x16 共阴驱动:8段4位 共阳驱动:4段8位 按键:7x4 封装SOP16/DIP16 VK1668 ---通讯接口:STB/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:70/52 共阴驱动:10段7位/13段4位 共阳驱动:7段10位 按键:10x2 封装SOP24 VK6932 --- 通讯接口:STB/CLK/DIN 电源电压:5V(4.5~5.5V) 驱动点阵:128 共阴驱动:8段16位17.5/140mA 共阳驱动:16段8位 按键:--- 封装SOP32 VK16K33 --- 通讯接口:SCL/SDA 电源电压:5V(4.5V~5.5V) 驱动点阵:128/96/64 共阴驱动:16段8位/12段8位/8段8位 共阳驱动:8段16位/8段12位/8段8位 按键:13x3 10x3 8x3 封装SOP20/SOP24/SOP28 (所有型号全部封装均有现货,欢迎加Q查询 191 888 5898 许生) 以上介绍内容为IC参数简介,难免有错漏,且相关IC型号众多,未能一一收录。欢迎联系索取完整资料及样品! 请加许先生 QQ:191 888 5898联系!谢谢 生意无论大小,做人首重诚信!本公司全体员工将既往开来,再接再厉。争取为各位带来更专业的技术支持,更优质的销售服务,更高性价比的好产品.竭诚希望能与各位客户朋友深入沟通,携手共进,共同成长,合作共赢!谢谢。
上传时间: 2019-07-03
上传用户:shubashushi66
MSP430系列flash型超低功耗16位单片机MSP430系列单片机在超低功耗和功能集成等方面有明显的特点。该系列单片机自问世以来,颇受用户关注。在2000年该系列单片机又出现了几个FLASH型的成员,它们除了仍然具备适合应用在自动信号采集系统、电池供电便携式装置、超长时间连续工作的设备等领域的特点外,更具有开发方便、可以现场编程等优点。这些技术特点正是应用工程师特别感兴趣的。《MSP430系列FLASH型超低功耗16位单片机》对该系列单片机的FLASH型成员的原理、结构、内部各功能模块及开发方法与工具作详细介绍。MSP430系列FLASH型超低功耗16位单片机 目录 第1章 引 论1.1 MSP430系列单片机1.2 MSP430F11x系列1.3 MSP430F11x1系列1.4 MSP430F13x系列1.5 MSP430F14x系列第2章 结构概述2.1 引 言2.2 CPU2.3 程序存储器2.4 数据存储器2.5 运行控制2.6 外围模块2.7 振荡器与时钟发生器第3章 系统复位、中断及工作模式3.1 系统复位和初始化3.1.1 引 言3.1.2 系统复位后的设备初始化3.2 中断系统结构3.3 MSP430 中断优先级3.3.1 中断操作--复位/NMI3.3.2 中断操作--振荡器失效控制3.4 中断处理 3.4.1 SFR中的中断控制位3.4.2 中断向量地址3.4.3 外部中断3.5 工作模式3.5.1 低功耗模式0、1(LPM0和LPM1)3.5.2 低功耗模式2、3(LPM2和LPM3)3.5.3 低功耗模式4(LPM4)22 3.6 低功耗应用的要点23第4章 存储空间4.1 引 言4.2 存储器中的数据4.3 片内ROM组织4.3.1 ROM 表的处理4.3.2 计算分支跳转和子程序调用4.4 RAM 和外围模块组织4.4.1 RAM4.4.2 外围模块--地址定位4.4.3 外围模块--SFR4.5 FLASH存储器4.5.1 FLASH存储器的组织4.5.2 FALSH存储器的数据结构4.5.3 FLASH存储器的控制寄存器4.5.4 FLASH存储器的安全键值与中断4.5.5 经JTAG接口访问FLASH存储器39第5章 16位CPU5.1 CPU寄存器5.1.1 程序计数器PC5.1.2 系统堆栈指针SP5.1.3 状态寄存器SR5.1.4 常数发生寄存器CG1和CG25.2 寻址模式5.2.1 寄存器模式5.2.2 变址模式5.2.3 符号模式5.2.4 绝对模式5.2.5 间接模式5.2.6 间接增量模式5.2.7 立即模式5.2.8 指令的时钟周期与长度5.3 指令组概述5.3.1 双操作数指令5.3.2 单操作数指令5.3.3 条件跳转5.3.4 模拟指令的简短格式5.3.5 其他指令第6章 硬件乘法器6.1 硬件乘法器6.2 硬件乘法器操作6.2.1 无符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.2 有符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.3 无符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.2.4 有符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.3 硬件乘法器寄存器6.4 硬件乘法器的软件限制6.4.1 寻址模式6.4.2 中断程序6.4.3 MACS第7章 基础时钟模块7.1 基础时钟模块7.2 LFXT1与XT27.2.1 LFXT1振荡器7.2.2 XT2振荡器7.2.3 振荡器失效检测7.2.4 XT振荡器失效时的DCO7.3 DCO振荡器7.3.1 DCO振荡器的特性7.3.2 DCO调整器7.4 时钟与运行模式7.4.1 由PUC启动7.4.2 基础时钟调整7.4.3 用于低功耗的基础时钟特性7.4.4 选择晶振产生MCLK7.4.5 时钟信号的同步7.5 基础时钟模块控制寄存器7.5.1 DCO时钟频率控制7.5.2 振荡器与时钟控制寄存器7.5.3 SFR控制位第8章 输入输出端口8.1 引 言8.2 端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理8.2.3 P1、P2的中断控制功能8.3 端口P3、P4、P5和P68.3.1 端口P3、P4、P5和P6的控制寄存器8.3.2 端口P3、P4、P5和P6的端口逻辑第9章 看门狗定时器WDT9.1 看门狗定时器9.2 WDT寄存器9.3 WDT中断控制功能9.4 WDT操作第10章 16位定时器Timer_A10.1 引 言10.2 Timer_A的操作10.2.1 定时器模式控制10.2.2 时钟源选择和分频10.2.3 定时器启动10.3 定时器模式10.3.1 停止模式10.3.2 增计数模式10.3.3 连续模式10.3.4 增/减计数模式10.4 捕获/比较模块10.4.1 捕获模式10.4.2 比较模式10.5 输出单元10.5.1 输出模式10.5.2 输出控制模块10.5.3 输出举例10.6 Timer_A的寄存器10.6.1 Timer_A控制寄存器TACTL10.6.2 Timer_A寄存器TAR10.6.3 捕获/比较控制寄存器CCTLx10.6.4 Timer_A中断向量寄存器10.7 Timer_A的UART应用 第11章 16位定时器Timer_B11.1 引 言11.2 Timer_B的操作11.2.1 定时器长度11.2.2 定时器模式控制11.2.3 时钟源选择和分频11.2.4 定时器启动11.3 定时器模式11.3.1 停止模式11.3.2 增计数模式11.3.3 连续模式11.3.4 增/减计数模式11.4 捕获/比较模块11.4.1 捕获模式11.4.2 比较模式11.5 输出单元11.5.1 输出模式11.5.2 输出控制模块11.5.3 输出举例11.6 Timer_B的寄存器11.6.1 Timer_B控制寄存器TBCTL11.6.2 Timer_B寄存器TBR11.6.3 捕获/比较控制寄存器CCTLx11.6.4 Timer_B中断向量寄存器第12章 USART通信模块的UART功能12.1 异步模式12.1.1 异步帧格式12.1.2 异步通信的波特率发生器12.1.3 异步通信格式12.1.4 线路空闲多机模式12.1.5 地址位多机通信格式12.2 中断和中断允许12.2.1 USART接收允许12.2.2 USART发送允许12.2.3 USART接收中断操作12.2.4 USART发送中断操作12.3 控制和状态寄存器12.3.1 USART控制寄存器UCTL12.3.2 发送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率选择和调整控制寄存器12.3.5 USART接收数据缓存URXBUF12.3.6 USART发送数据缓存UTXBUF12.4 UART模式,低功耗模式应用特性12.4.1 由UART帧启动接收操作12.4.2 时钟频率的充分利用与UART的波特率12.4.3 多处理机模式对节约MSP430资源的支持12.5 波特率计算 第13章 USART通信模块的SPI功能13.1 USART同步操作13.1.1 SPI模式中的主模式13.1.2 SPI模式中的从模式13.2 中断与控制功能 13.2.1 USART接收/发送允许位及接收操作13.2.2 USART接收/发送允许位及发送操作13.2.3 USART接收中断操作13.2.4 USART发送中断操作13.3 控制与状态寄存器13.3.1 USART控制寄存器13.3.2 发送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率选择和调制控制寄存器13.3.5 USART接收数据缓存URXBUF13.3.6 USART发送数据缓存UTXBUF第14章 比较器Comparator_A14.1 概 述14.2 比较器A原理14.2.1 输入模拟开关14.2.2 输入多路切换14.2.3 比较器14.2.4 输出滤波器14.2.5 参考电平发生器14.2.6 比较器A中断电路14.3 比较器A控制寄存器14.3.1 控制寄存器CACTL114.3.2 控制寄存器CACTL214.3.3 端口禁止寄存器CAPD14.4 比较器A应用14.4.1 模拟信号在数字端口的输入14.4.2 比较器A测量电阻元件14.4.3 两个独立电阻元件的测量系统14.4.4 比较器A检测电流或电压14.4.5 比较器A测量电流或电压14.4.6 测量比较器A的偏压14.4.7 比较器A的偏压补偿14.4.8 增加比较器A的回差第15章 模数转换器ADC1215.1 概 述15.2 ADC12的工作原理及操作15.2.1 ADC内核15.2.2 参考电平15.3 模拟输入与多路切换15.3.1 模拟多路切换15.3.2 输入信号15.3.3 热敏二极管的使用15.4 转换存储15.5 转换模式15.5.1 单通道单次转换模式15.5.2 序列通道单次转换模式15.5.3 单通道重复转换模式15.5.4 序列通道重复转换模式15.5.5 转换模式之间的切换15.5.6 低功耗15.6 转换时钟与转换速度15.7 采 样15.7.1 采样操作15.7.2 采样信号输入选择15.7.3 采样模式15.7.4 MSC位的使用15.7.5 采样时序15.8 ADC12控制寄存器15.8.1 控制寄存器ADC12CTL0和ADC12CTL115.8.2 转换存储寄存器ADC12MEMx15.8.3 控制寄存器ADC12MCTLx15.8.4 中断标志寄存器ADC12IFG.x和中断允许寄存器ADC12IEN.x15.8.5 中断向量寄存器ADC12IV15.9 ADC12接地与降噪第16章 FLASH型芯片的开发16.1 开发系统概述16.1.1 开发技术16.1.2 MSP430系列的开发16.1.3 MSP430F系列的开发16.2 FLASH型的FET开发方法16.2.1 MSP430芯片的JTAG接口16.2.2 FLASH型仿真工具16.3 FLASH型的BOOT ROM16.3.1 标准复位过程和进入BSL过程16.3.2 BSL的UART协议16.3.3 数据格式16.3.4 退出BSL16.3.5 保护口令16.3.6 BSL的内部设置和资源附录A 寻址空间附录B 指令说明B.1 指令汇总B.2 指令格式B.3 不增加ROM开销的模拟指令B.4 指令说明(字母顺序)B.5 用几条指令模拟的宏指令附录C MSP430系列单片机参数表附录D MSP430系列单片机封装形式附录E MSP430系列器件命名
上传时间: 2014-04-28
上传用户:sssnaxie
输入输出总线接口技术
上传时间: 2013-10-21
上传用户:lhuqi
Keil C51 V8 专业开发工具(PK51) PK51是为8051系列单片机所设计的开发工具,支持所有8051系列衍生产品,,支持带扩展存储器和扩展指令集(例如Dallas390/5240/400,Philips 51MX,Analog Devices MicroConverters)的新设备,以及支持很多公司的一流的设备和IP内核,比如Analog Devices, Atmel, Cypress Semiconductor, Dallas Semiconductor, Goal, Hynix, Infineon, Intel, NXP(founded by Philips), OKI, Silicon Labs,SMSC, STMicroeleectronics,Synopsis, TDK, Temic, Texas Instruments,Winbond等。 通过PK51专业级开发工具,可以轻松地了解8051的On-chip peripherals与及其它关键特性。 The PK51专业级开发工具包括… l μVision Ø 集成开发环境 Ø 调试器 Ø 软件模拟器 l Keil 8051扩展编译工具 Ø AX51宏汇编程序 Ø ANSI C编译工具 Ø LX51 连接器 Ø OHX51 Object-HEX 转换器 l Keil 8051编译工具 Ø A51宏汇编程序 Ø C51 ANSI C编译工具 Ø BL51 代码库连接器 Ø OHX51 Object-HEX 转换器 Ø OC51 集合目标转换器 l 目标调试器 Ø FlashMON51 目标监控器 Ø MON51目标监控器 Ø MON390 (Dallas 390)目标监控器 Ø MONADI (Analog Devices 812)目标监控器 Ø ISD51 在系统调试 l RTX51微实时内核 你应该考虑PK51开发工具包,如果你… l 需要用8051系列单片机来开发 l 需要开发 Dallas 390 或者 Philips 51MX代码 l 需要用C编写代码 l 需要一个软件模拟器或是没有硬件仿真器 l 需要在单芯片上基于小实时内核创建复杂的应用
上传时间: 2013-10-30
上传用户:yy_cn
工程技术上所谓的制冷,就是使某一系统(即空间或物体)的温度低于周围环境介质的温度,并维持这个低温的过程,这里所说的环境介质是指自然界的空气和水。制冷与空调设备以流体(气体与液体的总称)作为载能物质,实现热能与其它形式能量(主要为机械能)之间的转换或热能的转移。本章介绍流体的性质、热能与机械能之间的转换规律和热量的传递规律,这些知识是空调技术必不可少的理论基础。
标签: 制冷技术
上传时间: 2013-11-08
上传用户:huyiming139
当一个VI A.vi在VI B.vi 中使用,就称A.vi为B.vi的子VI,B.vi为A.vi的主VI。子VI 相当于文本编程语言中的子程序。 在主VI的程序框图中双击子VI的图标时,将出现该子VI 的前面板和程序框图。在前面板窗口和程序框图窗口的右上角可以看到该VI 的图标。该图标与将VI放置在程序框图中时所显示的图标相同。
标签:
上传时间: 2013-10-31
上传用户:jisujeke
用verilog设计密勒解码器 一、题目: 设计一个密勒解码器电路 二、输入信号: 1. DIN:输入数据 2. CLK:频率为2MHz的方波,占空比为50% 3. RESET:复位信号,低有效 三、输入信号说明: 输入数据为串行改进密勒码,每个码元持续时间为8μs,即16个CLK时钟;数据流是由A、B、C三种信号组成; A:前8个时钟保持“1”,接着5个时钟变为“0”,最后3个时钟为“1”。 B:在整个码元持续时间内都没有出现“0”,即连续16个时钟保持“1”。 C:前5个时钟保持“0”,后面11个时钟保持“1”。 改进密勒码编码规则如下: 如果码元为逻辑“1”,用A信号表示。 如果码元为逻辑“0”,用B信号表示,但以下两种特例除外:如果出现两个以上连“0”,则从第二个“0”起用C信号表示;如果在“通信起始位”之后第一位就是“0”,则用C信号表示,以下类推; “通信起始位”,用C信号表示; “通信结束位”,用“0”及紧随其后的B信号表示。 “无数据”,用连续的B信号表示。
上传时间: 2013-12-02
上传用户:wang0123456789
牛顿法解多项式的根 输入:多项式系数c[],多项式度数n,求在[a,b]间的根 输出:根 要求保证[a,b]间有根
上传时间: 2013-12-21
上传用户:秦莞尔w
一:需求分析 1. 问题描述 魔王总是使用自己的一种非常精练而抽象的语言讲话,没人能听懂,但他的语言是可逐步解释成人能听懂的语言,因为他的语言是由以下两种形式的规则由人的语言逐步抽象上去的: ----------------------------------------------------------- (1) a---> (B1)(B2)....(Bm) (2)[(op1)(p2)...(pn)]---->[o(pn)][o(p(n-1))].....[o(p1)o] ----------------------------------------------------------- 在这两种形式中,从左到右均表示解释.试写一个魔王语言的解释系统,把 他的话解释成人能听得懂的话. 2. 基本要求: 用下述两条具体规则和上述规则形式(2)实现.设大写字母表示魔王语言的词汇 小写字母表示人的语言的词汇 希腊字母表示可以用大写字母或小写字母代换的变量.魔王语言可含人的词汇. (1) B --> tAdA (2) A --> sae 3. 测试数据: B(ehnxgz)B 解释成 tsaedsaeezegexenehetsaedsae若将小写字母与汉字建立下表所示的对应关系,则魔王说的话是:"天上一只鹅地上一只鹅鹅追鹅赶鹅下鹅蛋鹅恨鹅天上一只鹅地上一只鹅". | t | d | s | a | e | z | g | x | n | h | | 天 | 地 | 上 | 一只| 鹅 | 追 | 赶 | 下 | 蛋 | 恨 |
上传时间: 2014-12-02
上传用户:jkhjkh1982