简单实用小功率DC-DC隔离电源模块原理图PCB Bom
上传时间: 2022-07-28
上传用户:
该文档为DC-DC模块电源的反馈电路和设计方法总结文档,是一份不错的参考资料,感兴趣的可以下载看看,,,,,,,,,,,,,,,,,
上传时间: 2022-08-10
上传用户:shjgzh
如何解决能源危机问题,已经成为全球关注的热点。在当前可利用的几种可再生能源中,太阳能和风能是应用比较广泛的两种。太阳能、风能在资源条件和技术应用上都有很好的互补特性,综合考虑太阳能和风能在多方面的互补特性而建立起来的风光互补发电系统是一种经济合理的供电方式。小型风光互补发电系统可以满足远离电网地区的独立供电的需求。 本论文的主要工作如下: 1、分析了小型风光互补发电系统的结构,研究了小型风光互补发电系统各个组成部分的工作原理及其运行特性。 2、分析了风力发电、光伏发电以及蓄电池充电的控制策略,重点研究了最大功率点跟踪控制,并在此基础上,归纳总结出一套可行的总体控制方案。 3、设计了一个以dsPIC30F2010单片机为核心的小型风光互补发电系统控制器,对开关电源电路、电流检测电路、电压检测电路、DC/DC变换电路、卸载电路等模块电路进行了硬件设计,在软件方面,采用功能块设计的方法,对AD采样、PWM控制、光伏充电、风机充电、卸载保护、PI控制、状态显示和过放保护等进行了软件编程。 4、对控制器进行了实验调试,实验结果表明本文研究开发的小型风光互补发电控制器结构简单,能够实现光伏发电和风力发电的最大功率点跟踪控制,满足蓄电池分段式充电以及过充、过放保护的要求。
上传时间: 2013-08-01
上传用户:zaizaibang
电力电子装置的控制技术随着电力电子技术的发展而愈来愈复杂。开关电源是现代电力电子设备中不可或缺的组成部分,其质量的优劣以及体积的大小直接影响电子设备整体性能。高频化、小型化、数字化是开关电源的发展方向。 在应用数字技术进行控制系统设计时,数字控制器的性能决定了控制系统的整体性能。数字化电力电子设备中的控制部分多以MCU/DSP为核心,以软件实现离散域的运算及控制。在很多高频应用的场合,目前常用的控制器(高性能单片机或DSP)的速度往往不能完全满足要求。FPGA具有设计灵活、集成度高、速度快、设计周期短等优点,与单片机和DSP相比,FPGA具有更高的处理速度。同时FPGA应用在数字化电力电子设备中,还可以大大简化控制系统结构,并可实现多种高速算法,具有较高的性价比。 依据FPGA的这些突出优点,本文将FPGA应用于直流开关电源控制器设计中,以实现开关电源数字化和高频化的要求。主要研究工作如下: 介绍了基于FPGA的DC/DC数字控制器中A/D采样控制、数字PI算法的实现;重点描述了采用混合PWM方法实现高分辨率、高精度数字PWM的设计方案,并对各模块进行了仿真测试;用FPGA开发板进行了一部分系统的仿真和实际结果的检测,验证了文中的分析结论,证实了可编程逻辑器件在直流开关电源控制器设计中的应用优势。
上传时间: 2013-07-23
上传用户:qulele
C-DC升压器
上传时间: 2014-12-24
上传用户:asdfasdfd
許多電信和計算應用都需要一個能夠從非常低輸入電壓獲得工作電源的高效率降壓型 DC/DC 轉換器。高輸出功率同步控制器 LT3740 就是這些應用的理想選擇,該器件能把 2.2V 至 22V 的輸入電源轉換為低至 0.8V 的輸出,並提供 2A 至 20A 的負載電流。其應用包括分布式電源繫統、負載點調節和邏輯電源轉換。
上传时间: 2013-12-30
上传用户:arnold
UCD30xx 系列数字电源控制器包括UCD3040、UCD3020 以及UCD3028,主要应用在交直变换(AC/DC)电源和隔离的直直变换(DC/DC)电源上。数字电源和模拟电源原理是一样的,但数字电源所使用的值都是数字量,是模拟量离散化后的值,所以不可避免的精度会有所损失。观察UCD30xx 数字脉宽调制(DPWM)的下降沿,会发现在电源稳态运行时DPWM 下降沿有抖动现象(此时示波器用上升沿触发);而根据环路带宽的不同,DPWM下降沿抖动范围也会不一样,带宽高抖动就大,带宽低抖动就小。对于大多数应用,这没有任何问题,但如果带宽要求很高,那么抖动范围就会比较大,严重时会引起变压器噪声超标。本文主要介绍如何利用外加模拟零极点的方法,在不降低系统带宽的同时降低DPWM抖动范围。
上传时间: 2013-11-14
上传用户:shen954166632
QA03是专为需要两组隔离电源的IGBT驱动器而设计的DC-DC模块电源。其内部采用了两路独立输出后共接模式,可以更好的为IGBT的开通与关断提供能量。同时具有输出短路保护及自恢复能力。
上传时间: 2013-11-21
上传用户:极客
QA02是专为需要两组隔离电源的IGBT驱动器而设计的DC-DC模块电源。其内部采用了两路独立输出后共接模式,可以更好的为IGBT的开通与关断提供能量。同时具有输出短路保护及自恢复能力。
上传时间: 2014-01-11
上传用户:blans
38V/100A可直接并联大功率AC/DC变换器 随着电力电子技术的发展,电源技术被广泛应用于计算机、工业仪器仪表、军事、航天等领域,涉及到国民经济各行各业。特别是近年来,随着IGBT的广泛应用,开关电源向更大功率方向发展。研制各种各样的大功率,高性能的开关电源成为趋势。某电源系统要求输入电压为AC220V,输出电压为DC38V,输出电流为100A,输出电压低纹波,功率因数>0.9,必要时多台电源可以直接并联使用,并联时的负载不均衡度<5%。 设计采用了AC/DC/AC/DC变换方案。一次整流后的直流电压,经过有源功率因数校正环节以提高系统的功率因数,再经半桥变换电路逆变后,由高频变压器隔离降压,最后整流输出直流电压。系统的主要环节有DC/DC电路、功率因数校正电路、PWM控制电路、均流电路和保护电路等。 1 有源功率因数校正环节 由于系统的功率因数要求0.9以上,采用二极管整流是不能满足要求的,所以,加入了有源功率因数校正环节。采用UC3854A/B控制芯片来组成功率因数电路。UC3854A/B是Unitrode公司一种新的高功率因数校正器集成控制电路芯片,是在UC3854基础上的改进。其特点是:采用平均电流控制,功率因数接近1,高带宽,限制电网电流失真≤3%[1]。图1是由UC3854A/B控制的有源功率因数校正电路。 该电路由两部分组成。UC3854A/B及外围元器件构成控制部分,实现对网侧输入电流和输出电压的控制。功率部分由L2,C5,V等元器件构成Boost升压电路。开关管V选择西门康公司的SKM75GB123D模块,其工作频率选在35kHz。升压电感L2为2mH/20A。C5采用四个450V/470μF的电解电容并联。因为,设计的PFC电路主要是用在大功率DC/DC电路中,所以,在负载轻的时候不进行功率因数校正,当负载较大时功率因数校正电路自动投入使用。此部分控制由图1中的比较器部分来实现。R10及R11是负载检测电阻。当负载较轻时,R10及R11上检测的信号输入给比较器,使其输出端为低电平,D2导通,给ENA(使能端)低电平使UC3854A/B封锁。在负载较大时ENA为高电平才让UC3854A/B工作。D3接到SS(软启动端),在负载轻时D3导通,使SS为低电平;当负载增大要求UC3854A/B工作时,SS端电位从零缓慢升高,控制输出脉冲占空比慢慢增大实现软启动。 2 DC/DC主电路及控制部分分析 2.1 DC/DC主电路拓扑 在大功率高频开关电源中,常用的主变换电路有推挽电路、半桥电路、全桥电路等[2]。其中推挽电路的开关器件少,输出功率大,但开关管承受电压高(为电源电压的2倍),且变压器有六个抽头,结构复杂;全桥电路开关管承受的电压不高,输出功率大,但是需要的开关器件多(4个),驱动电路复杂。半桥电路开关管承受的电压低,开关器件少,驱动简单。根据对各种拓扑方案的工程化实现难度,电气性能以及成本等指标的综合比较,本电源选用半桥式DC/DC变换器作为主电路。图2为大功率开关电源的主电路拓扑图。
上传时间: 2013-11-13
上传用户:ukuk