海思芯片的3520移植。U-Boot-移植应用指南
上传时间: 2020-03-11
上传用户:qinda
高清版U-Boot 开发资料2020.Das U-Boot 是一个主要用于嵌入式系统的引导加载程序,可以支持多种不同的计算机系统结构,包括PPC、ARM、AVR32、MIPS、x86、68k、Nios与MicroBlaze。这也是一套在GNU通用公共许可证之下发布的自由软件。Das U-Boot可以在x86计算机上建构,但这部x86计算机必须安装有可支持特定平台结构的交互发展GNU工具链,例如crosstool、Embedded Linux Development Kit (ELDK)或OSELAS.Toolchain。U-Boot不仅仅支持嵌入式Linux系统的引导,它还支持NetBSD, VxWorks, QNX, RTEMS, ARTOS, LynxOS, android嵌入式操作系统。其目前要支持的目标操作系统是OpenBSD, NetBSD, FreeBSD,4.4BSD, Linux, SVR4, Esix, Solaris, Irix, SCO, Dell, NCR, VxWorks, LynxOS, pSOS, QNX, RTEMS, ARTOS, android。这是U-Boot中Universal的一层含义,另外一层含义则是U-Boot除了支持PowerPC系列的处理器外,还能支持MIPS、 x86、ARM、NIOS、XScale等诸多常用系列的处理器。这两个特点正是U-Boot项目的开发目标,即支持尽可能多的嵌入式处理器和嵌入式操作系统。就目前来看,U-Boot对PowerPC系列处理器支持最为丰富,对Linux的支持最完善。其它系列的处理器和操作系统基本是在2002年11 月PPCBOOT改名为U-Boot后逐步扩充的。从PPCBOOT向U-Boot的顺利过渡,很大程度上归功于U-Boot的维护人德国DENX软件工程中心Wolfgang Denk[以下简称W.D]本人精湛专业水平和执着不懈的努力。当前,U-Boot项目正在他的领军之下,众多有志于开放源码BOOT LOADER移植工作的嵌入式开发人员正如火如荼地将各个不同系列嵌入式处理器的移植工作不断展开和深入,以支持更多的嵌入式操作系统的装载与引导。
标签: U-Boot
上传时间: 2022-03-10
上传用户:默默
U-BOOT 作为一级 Loader 模式,那么仅支持 EMMC 存储设备,编译完成后生成的镜像:RK3288LoaderU-BOOT_V2.17.01.bin其中 V2.17.01 是发布的版本号,rockchip 定义 U-Boot loader 的版本,其中 2.17 是根据存储版本定义的,客户务必不要修改这个版本,01 是 U-Boot 定义的小版本,用户根据实际需求在 二级 Loader 模式U-Boot 作为二级Loader模式,那么固件支持所有的存储设备,该模式下,需要MiniLoader支持,通过宏 CONFIG_MERGER_MINILOADER 进行配置生成。同时引入 Arm TrustedFirmware 后会生成 trust image,这个通过宏 CONFIG_MERGER_TRUSTIMAGE 进行配置生成。
标签: U-Boot
上传时间: 2022-07-17
上传用户:
U-Boot,全称 Universal Boot Loader,是遵循GPL条款的开放源码项目。U-Boot的作用是系统引导。U-Boot从FADSROM、8xxROM、PPCBOOT逐步发展演化而来。其源码目录、编译形式与Linux内核很相似,事实上,不少U-Boot源码就是根据相应的Linux内核源程序进行简化而形成的,尤其是一些设备的驱动程序,这从U-Boot源码的注释中能体现这一点。U-Boot不仅仅支持嵌入式Linux系统的引导,它还支持NetBSD, VxWorks, QNX, RTEMS, ARTOS, LynxOS, android嵌入式操作系统。其目前要支持的目标操作系统是OpenBSD, NetBSD, FreeBSD,4.4BSD, Linux, SVR4, Esix, Solaris, Irix, SCO, Dell, NCR, VxWorks, LynxOS, pSOS, QNX, RTEMS, ARTOS, android。这是U-Boot中Universal的一层含义,另外一层含义则是U-Boot除了支持PowerPC系列的处理器外,还能支持MIPS、 x86、ARM、NIOS、XScale等诸多常用系列的处理器。这两个特点正是U-Boot项目的开发目标,即支持尽可能多的嵌入式处理器和嵌入式操作系统
标签: U-Boot
上传时间: 2022-07-26
上传用户:fliang
该文档为U-Boot在64位多内核MIPS处理器上的移植总结文档,是一份不错的参考资料,感兴趣的可以下载看看,,,,,,,,,,,,,,,,,
标签: U-Boot
上传时间: 2022-07-28
上传用户:
Floyd-Warshall算法描述 1)适用范围: a)APSP(All Pairs Shortest Paths) b)稠密图效果最佳 c)边权可正可负 2)算法描述: a)初始化:dis[u,v]=w[u,v] b)For k:=1 to n For i:=1 to n For j:=1 to n If dis[i,j]>dis[i,k]+dis[k,j] Then Dis[I,j]:=dis[I,k]+dis[k,j] c)算法结束:dis即为所有点对的最短路径矩阵 3)算法小结:此算法简单有效,由于三重循环结构紧凑,对于稠密图,效率要高于执行|V|次Dijkstra算法。时间复杂度O(n^3)。 考虑下列变形:如(I,j)∈E则dis[I,j]初始为1,else初始为0,这样的Floyd算法最后的最短路径矩阵即成为一个判断I,j是否有通路的矩阵。更简单的,我们可以把dis设成boolean类型,则每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”来代替算法描述中的蓝色部分,可以更直观地得到I,j的连通情况。
标签: Floyd-Warshall Shortest Pairs Paths
上传时间: 2013-12-01
上传用户:dyctj
Algo s in C++. A higly valued book on various algo s book in c++. Go through the book and u will be highly enriched. A fantastic book for beginners.
标签: book through various valued
上传时间: 2017-05-01
上传用户:fanboynet
Fortran - Tóm tắ t nộ i dung mô n họ c Các khái niệ m và yế u tố trong ngô n ngữ lậ p trình FORTRAN. Các câ u lệ nh củ a ngô n ngữ FORTRAN. Cơ bả n về chư ơ ng chư ơ ng dị ch và mô i trư ờ ng lậ p trình DIGITAL Visual Fortran. Viế t và chạ y các chư ơ ng trình cho các bài toán đ ơ n giả n bằ ng ngô n ngữ FORTRAN.
上传时间: 2013-12-25
上传用户:songrui
图像的采集和传输是实时监控、远程控制、智能小区等诸多领域的关键技术。基于传统:PC的图像采集已成为现实。随着信息技术的迅速发展,嵌入式系统的研究开发成为了后PC时代的一个热点,它被广泛应用于工业现场、信息家电等各行各业。同时,图像的远程采集传输也朝着专业化、多样化和低成本的方向发展。利用嵌入式技术来实现图像的远程采集传输正顺应了时代发展,有较大的实用价值。 本文主要研究了基于嵌入式的远程图像采集传输系统。嵌入式终端采用$3C2410为核心的目标板为硬件平台,采用嵌入式Linux为系统平台。系统通过连接在嵌入式终端的USB摄像头完成静态图像数据采集,并进行图像压缩处理。在图像传输方面,论文设计了两种模式:一种是通过Intemet传输的、基于B/S模式的传输方式。在该模式下,远端客户机通过浏览器访问架设在终端里的嵌入式服务器而获得图像信息。另一种是基于GPRS网络实现远程无线图像传输。终端将采集到的图像数据通过GPRS网络发送到拥有固定Ip的监控服务器上来完成图像远程传输。 本文首先介绍了图像采集传输和嵌入式方面的相关内容,并介绍了本论文所采用的开发平台。为了顺利开发接着构建了开发环境,这里包括U-boot的移植、Linux系统的内核编译和移植、设备驱动模块的加载以及交叉编译环境的建立。在此基础上,利用Vide04Linux的接口函数,用C语言实现了图像原始数据的采集程序,并利用JPEG算法了实现图像压缩。在基于B/S模式的传输方式中,首先利用Boa架设了嵌入式服务器,然后用C语言完成CGI脚本,该脚本将图像嵌入网页并实时更新以实现网页的动态输出。在基于GPRS实现远程无线图像传输方式中,论文详细分析了系统通讯数据流的特征,提出了采用辨识特征字符、数据打包等策略以实现GPRS的网络连接和数据通讯,并且在此基础上用C语言编程实现。同时,在PC(Linux)上用Socket编程实现了监控服务器软件,该软件用以接收图像数据和控制嵌入式终端的系统状态。最后,论文分析比较了两种传输方式的区别和优缺点。试验证明,采用两种方式都能成功实现图像的远程采集传输,并且试验效果较好。
上传时间: 2013-05-17
上传用户:squershop
at91rm9200启动过程教程 系统上电,检测BMS,选择系统的启动方式,如果BMS为高电平,则系统从片内ROM启动。AT91RM9200的ROM上电后被映射到了0x0和0x100000处,在这两个地址处都可以访问到ROM。由于9200的ROM中固化了一个BOOTLOAER程序。所以PC从0X0处开始执行这个BOOTLOAER(准确的说应该是一级BOOTLOADER)。这个BOOTLOER依次完成以下步骤: 1、PLL SETUP,设置PLLB产生48M时钟频率提供给USB DEVICE。同时DEBUG USART也被初始化为48M的时钟频率; 2、相应模式下的堆栈设置; 3、检测主时钟源(Main oscillator); 4、中断控制器(AIC)的设置; 5、C 变量的初始化; 6、跳到主函数。 完成以上步骤后,我们可以认为BOOT过程结束,接下来的就是LOADER的过程,或者也可以认为是装载二级BOOTLOER。AT91RM9200按照DATAFLASH、EEPROM、连接在外部总线上的8位并行FLASH的顺序依次来找合法的BOOT程序。所谓合法的指的是在这些存储设备的开始地址处连续的存放的32个字节,也就是8条指令必须是跳转指令或者装载PC的指令,其实这样规定就是把这8条指令当作是异常向量表来处理。必须注意的是第6条指令要包含将要装载的映像的大小。关于如何计算和写这条指令可以参考用户手册。一旦合法的映像找到之后,则BOOT程序会把找到的映像搬到SRAM中去,所以映像的大小是非常有限的,不能超过16K-3K的大小。当BOOT程序完成了把合法的映像搬到SRAM的任务以后,接下来就进行存储器的REMAP,经过REMAP之后,SRAM从映设前的0X200000地址处被映设到了0X0地址并且程序从0X0处开始执行。而ROM这时只能在0X100000这个地址处看到了。至此9200就算完成了一种形式的启动过程。如果BOOT程序在以上所列的几种存储设备中找到合法的映像,则自动初始化DEBUG USART口和USB DEVICE口以准备从外部载入映像。对DEBUG口的初始化包括设置参数115200 8 N 1以及运行XMODEM协议。对USB DEVICE进行初始化以及运行DFU协议。现在用户可以从外部(假定为PC平台)载入你的映像了。在PC平台下,以WIN2000为例,你可以用超级终端来完成这个功能,但是还是要注意你的映像的大小不能超过13K。一旦正确从外部装载了映像,接下来的过程就是和前面一样重映设然后执行映像了。我们上面讲了BMS为高电平,AT91RM9200选择从片内的ROM启动的一个过程。如果BMS为低电平,则AT91RM9200会从片外的FLASH启动,这时片外的FLASH的起始地址就是0X0了,接下来的过程和片内启动的过程是一样的,只不过这时就需要自己写启动代码了,至于怎么写,大致的内容和ROM的BOOT差不多,不同的硬件设计可能有不一样的地方,但基本的都是一样的。由于片外FLASH可以设计的大,所以这里编写的BOOTLOADER可以一步到位,也就是说不用像片内启动可能需要BOOT好几级了,目前AT91RM9200上使用较多的bootloer是u-boot,这是一个开放源代码的软件,用户可以自由下载并根据自己的应用配置。总的说来,笔者以为AT91RM9200的启动过程比较简单,ATMEL的服务也不错,不但提供了片内启动的功能,还提供了UBOOT可供下载。笔者写了一个BOOTLODER从片外的FLASHA启动,效果还可以。 uboot结构与使用uboot是一个庞大的公开源码的软件。他支持一些系列的arm体系,包含常见的外设的驱动,是一个功能强大的板极支持包。其代码可以 http://sourceforge.net/projects/u-boot下载 在9200上,为了启动uboot,还有两个boot软件包,分别是loader和boot。分别完成从sram和flash中的一级boot。其源码可以从atmel的官方网站下载。 我们知道,当9200系统上电后,如果bms为高电平,则系统从片内rom启动,这时rom中固化的boot程序初始化了debug口并向其发送'c',这时我们打开超级终端会看到ccccc...。这说明系统已经启动,同时xmodem协议已经启动,用户可以通过超级终端下载用户的bootloader。作为第一步,我们下载loader.bin.loader.bin将被下载到片内的sram中。这个loder完成的功能主要是初始化时钟,sdram和xmodem协议,为下载和启动uboot做准备。当下载了loader.bin后,超级终端会继续打印:ccccc....。这时我们就可以下在uboot了。uboot将被下载到sdram中的一个地址后并把pc指针调到此处开始执行uboot。接着我们就可以在终端上看到uboot的shell启动了,提示符uboot>,用户可以uboot>help 看到命令列表和大概的功能。uboot的命令包含了对内存、flash、网络、系统启动等一些命令。 如果系统上电时bms为低电平,则系统从片外的flash启动。为了从片外的flash启动uboot,我们必须把boot.bin放到0x0地址出,使得从flash启动后首先执行boot.bin,而要少些boot.bin,就要先完成上面我们讲的那些步骤,首先开始从片内rom启动uboot。然后再利用uboot的功能完成把boot.bin和uboot.gz烧写到flash中的目的,假如我们已经启动了uboot,可以这样操作: uboot>protect off all uboot>erase all uboot>loadb 20000000 uboot>cp.b 20000000 10000000 5fff uboot>loadb 21000000 uboot>cp.b 210000000 10010000 ffff 然后系统复位,就可以看到系统先启动boot,然后解压缩uboot.gz,然后启动uboot。注意,这里uboot必须压缩成.gz文件,否则会出错。 怎么编译这三个源码包呢,首先要建立一个arm的交叉编译环境,关于如何建立,此处不予说明。建立好了以后,分别解压源码包,然后修改Makefile中的编译器项目,正确填写你的编译器的所在路径。 对loader和boot,直接make。对uboot,第一步:make_at91rm9200dk,第二步:make。这样就会在当前目录下分别生成*.bin文件,对于uboot.bin,我们还要压缩成.gz文件。 也许有的人对loader和boot搞不清楚为什么要两个,有什么区别吗?首先有区别,boot主要完成从flash中启动uboot的功能,他要对uboot的压缩文件进行解压,除此之外,他和loader并无大的区别,你可以把boot理解为在loader的基础上加入了解压缩.gz的功能而已。所以这两个并无多大的本质不同,只是他们的使命不同而已。 特别说名的是这三个软件包都是开放源码的,所以用户可以根据自己的系统的情况修改和配置以及裁减,打造属于自己系统的bootloder。
上传时间: 2013-10-27
上传用户:wsf950131