TI最新bsl协议说明。
上传时间: 2013-10-21
上传用户:u789u789u789
TI公司的DM642EVM的bsl源代码。
上传时间: 2014-10-15
上传用户:litianchu
This is bsl.zip for DSP c6000
上传时间: 2013-12-30
上传用户:asdkin
用于MSP430单片机烧录 bsl引导加载程序
上传时间: 2020-07-06
上传用户:wodedaqianjin
MSP430F5438的串口Bootloader(非bsl下载方式),从串口下载,两线即可,类似STC的MCU。带原代码及说明文档,方便二次开发
标签: msp430f5438 串口 bootloader
上传时间: 2022-06-29
上传用户:
瑞泰开发板ICETEK-DM642的实验例程 实验5.1:发光二极管的显示编程––––––––––––––––––– 85 实验5.2:定时器控制发光二极管的显示–––––––––––––––– 90 实验5.3:音频输出––––––––––––––––––––––––– 94 实验5.4:bsl 测试––––––––––––––––––––––––– 97 实验5.5:FLASH 烧写和程序自启动(Boot Loader)–––––––––––99 第二章:基于 ICETEK-DM642-PCI 的基本图象算法实现–––––––––––104 实验5.6---实验5.19:视频驱动程序应用––––––––––––––––104 实验5.20:视频图像处理-取反––––––––––––––––––––122 实验5.21:视频图像处理-直方图统计–––––––––––––––––124 实验5.22:视频图像处理-直方图均衡化增强––––––––––––––126 实验5.23:视频图像处理-中值滤波–––––––––––––––––– 129 实验5.24:视频图像处理-边缘检测(Sobel 算子)––––––––––––132 实验5.25:视频图像处理-傅立叶变换––––––––––––––––– 136 实验5.26:视频图像处理-彩色空间变换–––––––––––––––– 140 第三章:基于ICETEK-DM642-PCI 的FPGA 实现OSD 功能及图象算法–––– 144 实验5.27---实验5.30:视频图像与图形的叠加–––––––––––––144 第四章:基于ICETEK-DM642-PCI 的复杂图象算法实现––––––––––– 148 实验5.31:视频图像处理-H.263 编码解码––––––––––––––––148 实验5.32:视频图像处理-JPEG2 编码解码–––––––––––––––153 实验5.33:视频图像处理-MPEG2 编码解码–––––––––––––––157 实验5.34:视频图像处理-运动图像检测––––––––––––––––162 第五章:基于ICETEK-DM642-PCI 的图象网络算法实现–––––––––––166 实验5.35:视频图像处理-JPEG 网络摄像机–––––––––––––––166 实验5.36:视频图像处理-双路JPEG 网络摄像机–––––––––––––170 实验5.37:视频图像处理-视频网络服务器––––––––––––––– 174 实验5.38:视频图像处理-视频网络客户端––––––––––––––– 179 第六章:基于ICETEK-DM642-PCI 的语音算法实现:–––––––––––––184 实验5.39:语音处理-数字回声–––––––––––––––––––– 184 实验5.40:语音处理-滤波处理–––––––––––––––––––– 187 实验5.41:语音处理-滤波处理1––––––––––––––––––– 189 第七章:基于ICETEK-DM642-PCI 的上位机通讯实验–––––––––––– 191 实验5.42:通信-异步串口––––––––––––––––––––––191 实验5.43:通信-PCI 总线–––––––––––––––––––––– 194 实验 5.44:视频图像处理-生成图像文件–––––––––––––––– 198
上传时间: 2013-05-31
上传用户:zxianyu
本文主要以MSP430G2231 系列为例, 讲述了利用内部定时器来模拟DAC、软件UART 与PC 进行通讯,并通过串口对应用程序 进行在线升级的方法。本文给出了实现上述功能的硬件电路以及软件代码。实验证明,通 过MSP430G 系列的16 位定时器可以容易的实现8 位分辨率的DAC;通过软件模拟的 UART 能够与PC 机进行稳定可靠的通讯;通过bsl 程序可以对用户程序进行板上在线应 用编程。最后结合一个实例讲述MSP430G 系列在汽车车窗以及工业消费类电子产品的实际应用。
上传时间: 2013-10-16
上传用户:开怀常笑
MSP430系列flash型超低功耗16位单片机MSP430系列单片机在超低功耗和功能集成等方面有明显的特点。该系列单片机自问世以来,颇受用户关注。在2000年该系列单片机又出现了几个FLASH型的成员,它们除了仍然具备适合应用在自动信号采集系统、电池供电便携式装置、超长时间连续工作的设备等领域的特点外,更具有开发方便、可以现场编程等优点。这些技术特点正是应用工程师特别感兴趣的。《MSP430系列FLASH型超低功耗16位单片机》对该系列单片机的FLASH型成员的原理、结构、内部各功能模块及开发方法与工具作详细介绍。MSP430系列FLASH型超低功耗16位单片机 目录 第1章 引 论1.1 MSP430系列单片机1.2 MSP430F11x系列1.3 MSP430F11x1系列1.4 MSP430F13x系列1.5 MSP430F14x系列第2章 结构概述2.1 引 言2.2 CPU2.3 程序存储器2.4 数据存储器2.5 运行控制2.6 外围模块2.7 振荡器与时钟发生器第3章 系统复位、中断及工作模式3.1 系统复位和初始化3.1.1 引 言3.1.2 系统复位后的设备初始化3.2 中断系统结构3.3 MSP430 中断优先级3.3.1 中断操作--复位/NMI3.3.2 中断操作--振荡器失效控制3.4 中断处理 3.4.1 SFR中的中断控制位3.4.2 中断向量地址3.4.3 外部中断3.5 工作模式3.5.1 低功耗模式0、1(LPM0和LPM1)3.5.2 低功耗模式2、3(LPM2和LPM3)3.5.3 低功耗模式4(LPM4)22 3.6 低功耗应用的要点23第4章 存储空间4.1 引 言4.2 存储器中的数据4.3 片内ROM组织4.3.1 ROM 表的处理4.3.2 计算分支跳转和子程序调用4.4 RAM 和外围模块组织4.4.1 RAM4.4.2 外围模块--地址定位4.4.3 外围模块--SFR4.5 FLASH存储器4.5.1 FLASH存储器的组织4.5.2 FALSH存储器的数据结构4.5.3 FLASH存储器的控制寄存器4.5.4 FLASH存储器的安全键值与中断4.5.5 经JTAG接口访问FLASH存储器39第5章 16位CPU5.1 CPU寄存器5.1.1 程序计数器PC5.1.2 系统堆栈指针SP5.1.3 状态寄存器SR5.1.4 常数发生寄存器CG1和CG25.2 寻址模式5.2.1 寄存器模式5.2.2 变址模式5.2.3 符号模式5.2.4 绝对模式5.2.5 间接模式5.2.6 间接增量模式5.2.7 立即模式5.2.8 指令的时钟周期与长度5.3 指令组概述5.3.1 双操作数指令5.3.2 单操作数指令5.3.3 条件跳转5.3.4 模拟指令的简短格式5.3.5 其他指令第6章 硬件乘法器6.1 硬件乘法器6.2 硬件乘法器操作6.2.1 无符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.2 有符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.3 无符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.2.4 有符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.3 硬件乘法器寄存器6.4 硬件乘法器的软件限制6.4.1 寻址模式6.4.2 中断程序6.4.3 MACS第7章 基础时钟模块7.1 基础时钟模块7.2 LFXT1与XT27.2.1 LFXT1振荡器7.2.2 XT2振荡器7.2.3 振荡器失效检测7.2.4 XT振荡器失效时的DCO7.3 DCO振荡器7.3.1 DCO振荡器的特性7.3.2 DCO调整器7.4 时钟与运行模式7.4.1 由PUC启动7.4.2 基础时钟调整7.4.3 用于低功耗的基础时钟特性7.4.4 选择晶振产生MCLK7.4.5 时钟信号的同步7.5 基础时钟模块控制寄存器7.5.1 DCO时钟频率控制7.5.2 振荡器与时钟控制寄存器7.5.3 SFR控制位第8章 输入输出端口8.1 引 言8.2 端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理8.2.3 P1、P2的中断控制功能8.3 端口P3、P4、P5和P68.3.1 端口P3、P4、P5和P6的控制寄存器8.3.2 端口P3、P4、P5和P6的端口逻辑第9章 看门狗定时器WDT9.1 看门狗定时器9.2 WDT寄存器9.3 WDT中断控制功能9.4 WDT操作第10章 16位定时器Timer_A10.1 引 言10.2 Timer_A的操作10.2.1 定时器模式控制10.2.2 时钟源选择和分频10.2.3 定时器启动10.3 定时器模式10.3.1 停止模式10.3.2 增计数模式10.3.3 连续模式10.3.4 增/减计数模式10.4 捕获/比较模块10.4.1 捕获模式10.4.2 比较模式10.5 输出单元10.5.1 输出模式10.5.2 输出控制模块10.5.3 输出举例10.6 Timer_A的寄存器10.6.1 Timer_A控制寄存器TACTL10.6.2 Timer_A寄存器TAR10.6.3 捕获/比较控制寄存器CCTLx10.6.4 Timer_A中断向量寄存器10.7 Timer_A的UART应用 第11章 16位定时器Timer_B11.1 引 言11.2 Timer_B的操作11.2.1 定时器长度11.2.2 定时器模式控制11.2.3 时钟源选择和分频11.2.4 定时器启动11.3 定时器模式11.3.1 停止模式11.3.2 增计数模式11.3.3 连续模式11.3.4 增/减计数模式11.4 捕获/比较模块11.4.1 捕获模式11.4.2 比较模式11.5 输出单元11.5.1 输出模式11.5.2 输出控制模块11.5.3 输出举例11.6 Timer_B的寄存器11.6.1 Timer_B控制寄存器TBCTL11.6.2 Timer_B寄存器TBR11.6.3 捕获/比较控制寄存器CCTLx11.6.4 Timer_B中断向量寄存器第12章 USART通信模块的UART功能12.1 异步模式12.1.1 异步帧格式12.1.2 异步通信的波特率发生器12.1.3 异步通信格式12.1.4 线路空闲多机模式12.1.5 地址位多机通信格式12.2 中断和中断允许12.2.1 USART接收允许12.2.2 USART发送允许12.2.3 USART接收中断操作12.2.4 USART发送中断操作12.3 控制和状态寄存器12.3.1 USART控制寄存器UCTL12.3.2 发送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率选择和调整控制寄存器12.3.5 USART接收数据缓存URXBUF12.3.6 USART发送数据缓存UTXBUF12.4 UART模式,低功耗模式应用特性12.4.1 由UART帧启动接收操作12.4.2 时钟频率的充分利用与UART的波特率12.4.3 多处理机模式对节约MSP430资源的支持12.5 波特率计算 第13章 USART通信模块的SPI功能13.1 USART同步操作13.1.1 SPI模式中的主模式13.1.2 SPI模式中的从模式13.2 中断与控制功能 13.2.1 USART接收/发送允许位及接收操作13.2.2 USART接收/发送允许位及发送操作13.2.3 USART接收中断操作13.2.4 USART发送中断操作13.3 控制与状态寄存器13.3.1 USART控制寄存器13.3.2 发送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率选择和调制控制寄存器13.3.5 USART接收数据缓存URXBUF13.3.6 USART发送数据缓存UTXBUF第14章 比较器Comparator_A14.1 概 述14.2 比较器A原理14.2.1 输入模拟开关14.2.2 输入多路切换14.2.3 比较器14.2.4 输出滤波器14.2.5 参考电平发生器14.2.6 比较器A中断电路14.3 比较器A控制寄存器14.3.1 控制寄存器CACTL114.3.2 控制寄存器CACTL214.3.3 端口禁止寄存器CAPD14.4 比较器A应用14.4.1 模拟信号在数字端口的输入14.4.2 比较器A测量电阻元件14.4.3 两个独立电阻元件的测量系统14.4.4 比较器A检测电流或电压14.4.5 比较器A测量电流或电压14.4.6 测量比较器A的偏压14.4.7 比较器A的偏压补偿14.4.8 增加比较器A的回差第15章 模数转换器ADC1215.1 概 述15.2 ADC12的工作原理及操作15.2.1 ADC内核15.2.2 参考电平15.3 模拟输入与多路切换15.3.1 模拟多路切换15.3.2 输入信号15.3.3 热敏二极管的使用15.4 转换存储15.5 转换模式15.5.1 单通道单次转换模式15.5.2 序列通道单次转换模式15.5.3 单通道重复转换模式15.5.4 序列通道重复转换模式15.5.5 转换模式之间的切换15.5.6 低功耗15.6 转换时钟与转换速度15.7 采 样15.7.1 采样操作15.7.2 采样信号输入选择15.7.3 采样模式15.7.4 MSC位的使用15.7.5 采样时序15.8 ADC12控制寄存器15.8.1 控制寄存器ADC12CTL0和ADC12CTL115.8.2 转换存储寄存器ADC12MEMx15.8.3 控制寄存器ADC12MCTLx15.8.4 中断标志寄存器ADC12IFG.x和中断允许寄存器ADC12IEN.x15.8.5 中断向量寄存器ADC12IV15.9 ADC12接地与降噪第16章 FLASH型芯片的开发16.1 开发系统概述16.1.1 开发技术16.1.2 MSP430系列的开发16.1.3 MSP430F系列的开发16.2 FLASH型的FET开发方法16.2.1 MSP430芯片的JTAG接口16.2.2 FLASH型仿真工具16.3 FLASH型的BOOT ROM16.3.1 标准复位过程和进入bsl过程16.3.2 bsl的UART协议16.3.3 数据格式16.3.4 退出bsl16.3.5 保护口令16.3.6 bsl的内部设置和资源附录A 寻址空间附录B 指令说明B.1 指令汇总B.2 指令格式B.3 不增加ROM开销的模拟指令B.4 指令说明(字母顺序)B.5 用几条指令模拟的宏指令附录C MSP430系列单片机参数表附录D MSP430系列单片机封装形式附录E MSP430系列器件命名
上传时间: 2014-04-28
上传用户:sssnaxie
使用注意:注意烧写的时候不要勾选SC0,SC1这两项加密项也不要选 初学51单片机或是业余玩玩单片机开发,每次总要不断的调试程序,如没有仿真器又不喜欢用软件仿真,那只有每次把编译好的程序烧录到芯片上,然后在应用电路或实验板上观察程序运行的结果,对于一些小程序这样的做好也可以很快找到程序上的错误,但是程序大了,变量也会变的很多,而直接烧片就很难看到这些变量的值了,在修改程序时还要不断的烧片实验,确实很麻烦,这时如果有一台仿真器就会变得很好方便了。但一台好的仿真器对于业余爱好者来说确实有一些贵,在这里介绍这种易于自制的51芯片仿真器虽然有一些地方不够完善,但还是非常适于初学51单片机的朋友和经济能力不是很好的业余爱好者。 这个仿真器的仿真CPU是使用SST公司的SST89C58或SST89C54(其它相容的芯片也可,这里主要讲述SST89C58),对于没有可以烧写SST89C58芯片的朋友应该选用CA版本的SST89C58芯片,这个CA型号的芯片出厂时已内置了bsl1.1E的固件程序。那什么是bsl呢?bsl就是英文BOOT-Strap Loader,意思就是可引导装载,形象来说就像电脑用DOS起动盘起动后可以装载应用程序并运行。只不过SST89C58是用串口来输入程序资料的。为了能把编译好的单片机程序HEX或BIN文件下载到SST89C58芯片上,SST公司还提供了一种叫EasyIAP的软件,IAP为In-Application Programming,有了这个软件就可以把SST89C54变为在线下载的实验器。
上传时间: 2013-11-18
上传用户:gonuiln
异步串口,运用TI提供bsl库的UART控制程序接口来实现同上位机的数据交换。
标签: 异步串口
上传时间: 2015-05-22
上传用户:asdfasdfd