虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

bottom

  • TR6850S参数介绍

    测试机 TR6850S 台湾德律,完整功能性测试向量及直流参数测试及类比信号参数 测试。

    标签: 6850S 6850 TR 参数

    上传时间: 2018-05-04

    上传用户:wangdaoxing

  • 数据结构实验

    #include <stdio.h>   #include <stdlib.h> ///链式栈      typedef struct node   {       int data;       struct node *next;   }Node,*Linklist;      Linklist Createlist()   {       Linklist p;       Linklist h;       int data1;       scanf("%d",&data1);       if(data1 != 0)       {           h = (Node *)malloc(sizeof(Node));           h->data = data1;           h->next = NULL;       }       else if(data1 == 0)       return NULL;       scanf("%d",&data1);       while(data1 != 0)       {           p = (Node *)malloc(sizeof(Node));           p -> data = data1;           p -> next = h;           h = p;           scanf("%d",&data1);       }       return h;   }      void Outputlist(Node *head)   {       Linklist p;       p = head;       while(p != NULL )       {           printf("%d ",p->data);           p = p->next;       }       printf("\n");   }      void Freelist(Node *head)   {       Node *p;       Node *q = NULL;       p = head;       while(p != NULL)       {           q = p;           p = p->next;           free(q);       }   }      int main()   {       Node *head;       head = Createlist();          Outputlist(head);          Freelist(head);          return 0;   }   2.顺序栈 [cpp] view plain copy #include <iostream>   #include <stdio.h>   #include <stdlib.h> ///顺序栈   #define MaxSize 100      using namespace std;      typedef

    标签: 数据结构 实验

    上传时间: 2018-05-09

    上传用户:123456..

  • 数据结构实验

    #include <iostream> #include <stdio.head> #include <stdlib.head> #include <string.head> #define ElemType int #define max 100 using namespace std; typedef struct node1 { ElemType data; struct node1 *next; }Node1,*LinkList;//链栈 typedef struct { ElemType *base; int top; }SqStack;//顺序栈 typedef struct node2 { ElemType data; struct node2 *next; }Node2,*LinkQueue; typedef struct node22 { LinkQueue front; LinkQueue rear; }*LinkList;//链队列 typedef struct { ElemType *base; int front,rear; }SqQueue;//顺序队列 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 //1.采用链式存储实现栈的初始化、入栈、出栈操作。 LinkList CreateStack()//创建栈 { LinkList top; top=NULL; return top; } bool StackEmpty(LinkList s)//判断栈是否为空,0代表空 { if(s==NULL) return 0; else return 1; } LinkList Pushead(LinkList s,int x)//入栈 { LinkList q,top=s; q=(LinkList)malloc(sizeof(Node1)); q->data=x; q->next=top; top=q; return top; } LinkList Pop(LinkList s,int &e)//出栈 { if(!StackEmpty(s)) { printf("栈为空。"); } else { e=s->data; LinkList p=s; s=s->next; free(p); } return s; } void DisplayStack(LinkList s)//遍历输出栈中元素 { if(!StackEmpty(s)) printf("栈为空。"); else { wheadile(s!=NULL) { cout<<s->data<<" "; s=s->next; } cout<<endl; } } 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 //2.采用顺序存储实现栈的初始化、入栈、出栈操作。 int StackEmpty(int t)//判断栈S是否为空 { SqStack.top=t; if (SqStack.top==0) return 0; else return 1; } int InitStack() { SqStack.top=0; return SqStack.top; } int pushead(int t,int e) { SqStack.top=t; SqStack.base[++SqStack.top]=e; return SqStack.top; } int pop(int t,int *e)//出栈 { SqStack.top=t; if(!StackEmpty(SqStack.top)) { printf("栈为空."); return SqStack.top; } *e=SqStack.base[s.top]; SqStack.top--; return SqStack.top; } 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 //3.采用链式存储实现队列的初始化、入队、出队操作。 LinkList InitQueue()//创建 { LinkList head; head->rear=(LinkQueue)malloc(sizeof(Node)); head->front=head->rear; head->front->next=NULL; return head; } void deleteEle(LinkList head,int &e)//出队 { LinkQueue p; p=head->front->next; e=p->data; head->front->next=p->next; if(head->rear==p) head->rear=head->front; free(p); } void EnQueue(LinkList head,int e)//入队 { LinkQueue p=(LinkQueue)malloc(sizeof(Node)); p->data=e; p->next=NULL; head->rear->next=p; head->rear=p; } 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 //4.采用顺序存储实现循环队列的初始化、入队、出队操作。 bool InitQueue(SqQueue &head)//创建队列 { head.data=(int *)malloc(sizeof(int)); head.front=head.rear=0; return 1; } bool EnQueue(SqQueue &head,int e)//入队 { if((head.rear+1)%MAXQSIZE==head.front) { printf("队列已满\n"); return 0; } head.data[head.rear]=e; head.rear=(head.rear+1)%MAXQSIZE; return 1; } int QueueLengthead(SqQueue &head)//返回队列长度 { return (head.rear-head.front+MAXQSIZE)%MAXQSIZE; } bool deleteEle(SqQueue &head,int &e)//出队 { if(head.front==head.rear) { cout<<"队列为空!"<<endl; return 0; } e=head.data[head.front]; head.front=(head.front+1)%MAXQSIZE; return 1; } int gethead(SqQueue head)//得到队列头元素 { return head.data[head.front]; } int QueueEmpty(SqQueue head)//判断队列是否为空 { if (head.front==head.rear) return 1; else return 0; } void travelQueue(SqQueue head)//遍历输出 { wheadile(head.front!=head.rear) { printf("%d ",head.data[head.front]); head.front=(head.front+1)%MAXQSIZE; } cout<<endl; } 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 //5.在主函数中设计一个简单的菜单,分别测试上述算法。 int main() { LinkList top=CreateStack(); int x; wheadile(scanf("%d",&x)!=-1) { top=Pushead(top,x); } int e; wheadile(StackEmpty(top)) { top=Pop(top,e); printf("%d ",e); }//以上是链栈的测试 int top=InitStack(); int x; wheadile(cin>>x) top=pushead(top,x); int e; wheadile(StackEmpty(top)) { top=pop(top,&e); printf("%d ",e); }//以上是顺序栈的测试 LinkList Q; Q=InitQueue(); int x; wheadile(scanf("%d",&x)!=-1) { EnQueue(Q,x); } int e; wheadile(Q) { deleteEle(Q,e); printf("%d ",e); }//以上是链队列的测试 SqQueue Q1; InitQueue(Q1); int x; wheadile(scanf("%d",&x)!=-1) { EnQueue(Q1,x); } int e; wheadile(QueueEmpty(Q1)) { deleteEle(Q1,e); printf("%d ",e); } return 0; }

    标签: 数据结构 实验

    上传时间: 2018-05-09

    上传用户:123456..

  • java编程 PL0编译器(Java版)

    实现一个Java版的PL0编译器。 (1) 能运行由《编译原理》教材中定义的PL0语言编写而成的源程序 (2) 参考C版源代码,遵循编译器的基本结构,应用面向对象软件设计方法重新实现。不应仅对C版代码作简单的翻译。 (3) 提供简单的断点、单步调试功能,用户能实时指定并查看某个变量的值 (4) 包括测试例子 直接运行jar文件 简单说明文档

    标签: java Java PL0 编程 编译器

    上传时间: 2018-05-13

    上传用户:aloger

  • 基于FPGA的嵌入式图像处理系统设计

    《基于FPGA的嵌入式图像处理系统设计》详细介绍了FPGA(Field Programmable Gate Array,现场可编程门阵列)这种新型可编程电子器件的特点,对FPGA的各种编程语言的发展历程进行了回顾,并针对嵌入式图像处理系统的特点和应用背景,详细介绍了如何利用FPGA的硬件并行性特点研制开发高性能嵌入式图像处理系统。作者还结合自己的经验,介绍了研制开发基于FPGA的嵌入式图像处理系统所需要的正确思路以及许多实用性技巧,并给出了许多图像处理算法在FPGA上的具体实现方法以及多个基于FPGA实现嵌入式图像处理系统的应用实例。 《基于FPGA的嵌入式图像处理系统设计》对FPGA技术的初学者以及已经具有比较丰富的设计经验的读者来说都有很好的参考价值,也将为从事基于FPGA的嵌入式系统开发和应用的软硬件工程师和科研人员提供一本比较系统、全面的学习材料。

    标签: fpga

    上传时间: 2018-06-19

    上传用户:gsl13

  • PLC编程资料

    PLC即可编程控制器,(ProgrammablelogicController),是指以计算机技术为基础的新型工业控制装置。 在1987年国际电工委员会(InternationalElectricalCommittee)颁布的PLC标准草案中对PLC做了如下定义:“PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。

    标签: PLC 编程资料

    上传时间: 2018-06-27

    上传用户:454545

  • usbip驱动 Windows源码

    开源项目,USBIP客户端代码,2.0版本

    标签: Windows usbip 驱动 源码

    上传时间: 2018-06-28

    上传用户:ley.x

  • 有限差分法

    function [alpha,N,U]=youxianchafen2(r1,r2,up,under,num,deta)      %[alpha,N,U]=youxianchafen2(a,r1,r2,up,under,num,deta)   %该函数用有限差分法求解有两种介质的正方形区域的二维拉普拉斯方程的数值解   %函数返回迭代因子、迭代次数以及迭代完成后所求区域内网格节点处的值   %a为正方形求解区域的边长   %r1,r2分别表示两种介质的电导率   %up,under分别为上下边界值   %num表示将区域每边的网格剖分个数   %deta为迭代过程中所允许的相对误差限      n=num+1; %每边节点数   U(n,n)=0; %节点处数值矩阵   N=0; %迭代次数初值   alpha=2/(1+sin(pi/num));%超松弛迭代因子   k=r1/r2; %两介质电导率之比   U(1,1:n)=up; %求解区域上边界第一类边界条件   U(n,1:n)=under; %求解区域下边界第一类边界条件   U(2:num,1)=0;U(2:num,n)=0;      for i=2:num   U(i,2:num)=up-(up-under)/num*(i-1);%采用线性赋值对上下边界之间的节点赋迭代初值   end   G=1;   while G>0 %迭代条件:不满足相对误差限要求的节点数目G不为零   Un=U; %完成第n次迭代后所有节点处的值   G=0; %每完成一次迭代将不满足相对误差限要求的节点数目归零   for j=1:n   for i=2:num   U1=U(i,j); %第n次迭代时网格节点处的值      if j==1 %第n+1次迭代左边界第二类边界条件   U(i,j)=1/4*(2*U(i,j+1)+U(i-1,j)+U(i+1,j));   end         if (j>1)&&(j                 U2=1/4*(U(i,j+1)+ U(i-1,j)+ U(i,j-1)+ U(i+1,j));    U(i,j)=U1+alpha*(U2-U1); %引入超松弛迭代因子后的网格节点处的值      end      if i==n+1-j %第n+1次迭代两介质分界面(与网格对角线重合)第二类边界条件   U(i,j)=1/4*(2/(1+k)*(U(i,j+1)+U(i+1,j))+2*k/(1+k)*(U(i-1,j)+U(i,j-1)));      end      if j==n %第n+1次迭代右边界第二类边界条件   U(i,n)=1/4*(2*U(i,j-1)+U(i-1,j)+U(i+1,j));   end   end   end   N=N+1 %显示迭代次数   Un1=U; %完成第n+1次迭代后所有节点处的值   err=abs((Un1-Un)./Un1);%第n+1次迭代与第n次迭代所有节点值的相对误差   err(1,1:n)=0; %上边界节点相对误差置零   err(n,1:n)=0; %下边界节点相对误差置零    G=sum(sum(err>deta))%显示每次迭代后不满足相对误差限要求的节点数目G   end

    标签: 有限差分

    上传时间: 2018-07-13

    上传用户:Kemin

  • DCU32INT

    破解一个第三方控件的dcu

    标签: DCU INT 32

    上传时间: 2018-07-27

    上传用户:chinacoho

  • 数字信号处理第四版 答案

    程佩青 数字信号处理 第四版 课后答案 低通滤波单元滤除信号的部分高频成分,防止模数转换时失去原信号的基本特征。模数转换单元每隔一段时间测量一次模拟信号,并将测量结果用二进制数表示。 数字信号处理单元实际上是一个计算机,它按照指令对二进制的数字信号进行计算。例如,将声波信号与一个高频正弦波信号相乘,可实现幅度调制。实际上,数字信号往往还要变回模拟信号,才能发挥它的作用。例如,无线电是电磁波通过天线向外发射的,这时的电磁波只能是模拟信号。

    标签: 数字信号处理

    上传时间: 2018-07-28

    上传用户:linda0307