桌面电脑的输入处理可以归类为实时”为了保证用户的最佳体验,计算机对每个输入的响应应当限定在一个恰当的时间范围—但是如果响应时间超出了限定范围并不会让人觉得这台电脑无法使用。比如说,键盘操作必须在键按下后的某个时间内作出明显的提示但如果按键提示超出了这个时间,会使得这个系统看起来响应太慢,而不致于说这台电脑不能使用。仅仅从单处理器运行多线程这一点来说,实时嵌入式系统中的多任务与桌面电脑的多任务从概念上来讲是相似的。但实时嵌入式系统的侧重点却不同于桌面电脑—特别是当嵌入式系统期望提供使实时听为的时候硬实时功能必须在给定的时间限制之内完成——如果无法做到即意味着整个系统的绝对失败。汽车的安全气囊触发机制就是一个硬实时功能的例子。安全气囊在撞击发生后给定时间限制内必须弹出。如果响应时间超出了这个时间限制,会使得驾驶员受到伤害,而这原本是可以避免的。大多数嵌入式系统不仅能满足硬实时要求,也能满足软实时要求术语说明在F田 eRTo s中,每个执行线程都被称为务”在嵌入式社区中,对此并没有个公允的术语,但我更喜欢用务响不是嗖线程”因为从以前的经验来看,线程具有更多的特定含义。本章的日的是让读者充分了解:·在应用程序中,FeR TO S如何为各任务分配处理时间·在任意给定时刻,FIPeR To s如何选择任务投入运行任务优先级如何影响系统行为。·任务存在哪些状态
标签: freertos
上传时间: 2022-03-19
上传用户:zhanglei193
华为电容基础和深入认识+电容10说1)旁路 旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化, 降低负载需求。 就像小型可充电电池一样,旁路电容能够被充电,并向器件进 行放电。 为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地 管脚。 这能够很好地防止输入值过大而导致的地电位抬高和噪声。地弹是地连 接处在通过大电流毛刺时的电压降。 2)去藕 去藕,又称解藕。 从电路来说, 总是可以区分为驱动的源和被驱动的负载。 如果负载电容比较大, 驱动电路要把电容充电、放电, 才能完成信号的跳变, 在上升沿比较陡峭的时候, 电流比较大, 这样驱动的电流就会吸收很大的电源 电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这 种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作,这就 是所谓的“耦合”。 去藕电容就是起到一个“电池”的作用,满足驱动电路电流的变化,避免相 互间的耦合干扰。 将旁路电容和去藕电容结合起来将更容易理解。旁路电容实际也是去藕合 的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗 泄防途径。高频旁路电容一般比较小,根据谐振频率一般取 0.1µF、0.01µF 等;
上传时间: 2022-03-20
上传用户:
《统计信号处理基础:估计与检测理论》是一部经典的有关统计信号处理的权威著作。全书分为两卷,分别讲解了统计信号处理基础的估计理论和检测理论。 第一卷详细介绍了经典估计理论和贝叶斯估计,总结了各种估计方法,考虑了维纳滤波和卡尔曼滤波,并介绍了对复数据和参数的估计方法。本卷给出了大量的应用实例,范围包括高分辨率谱分析、系统辨识、数字滤波器设计、自适应噪声对消、自适应波束形成、跟踪和定位等;并且设计了大量的习题来加深对基本概念的理解。第二卷全面介绍了计算机上实现的最佳检测算法,并且重点介绍了现实中的信号处理应用,包括现代语音通信技术及传统的声呐/雷达系统。本卷从检测的基础理论开始,回顾了高斯、c2、F、瑞利及莱斯概率密度;讲解了高斯随机变量的二次型,以及渐近高斯概率密度和蒙特卡洛性能评估;介绍了基于简单假设检验的检测理论基础,包括Neyman-Pearson定理、无关数据的处理、贝叶斯风险、多元假设检验,以及确定性信号和随机信号的检测。最后详细分析了适合于未知信号和未知噪声参数的复合假设检验。
标签: 信号处理
上传时间: 2022-04-14
上传用户:1208020161
反激式开关电源变压器设计的详细步骤85W反激变压器设计的详细步骤 1. 确定电源规格. 1).输入电压范围Vin=90—265Vac; 2).输出电压/负载电流:Vout1=42V/2A, Pout=84W 3).转换的效率=0.80 Pin=84/0.8=105W 2. 工作频率,匝比, 最低输入电压和最大占空比确定. Vmos*0.8>Vinmax+n(Vo+Vf)600*0.8>373+n(42+1)得n<2.5Vd*0.8>Vinmax/n+Vo400*0.8>373/n+42得n>1.34 所以n取1.6最低输入电压Vinmin=√[(Vacmin√2)* (Vacmin√2)-2Pin(T/2-tc)/Cin=(90√2*90√2-2*105*(20/2-3)/0.00015=80V取:工作频率fosc=60KHz, 最大占空比Dmax=n(Vo+Vf)/[n(Vo+Vf)+Vinmin]= 1.6(42+1)/[1.6(42+1)+80]=0.45 Ton(max)=1/f*Dmax=0.45/60000=7.5us 3. 变压器初级峰值电流的计算. Iin-avg=1/3Pin/Vinmin=1/3*105/80=0.4AΔIp1=2Iin-avg/D=2*0.4/0.45=1.78AIpk1=Pout/?/Vinmin*D+ΔIp1=84/0.8/80/0.45=2.79A 4. 变压器初级电感量的计算. 由式子Vdc=Lp*dip/dt,得: Lp= Vinmin*Ton(max)/ΔIp1 =80*0.0000075/1.78 =337uH 取Lp=337 uH 5.变压器铁芯的选择. 根据式子Aw*Ae=Pt*1000000/[2*ko*kc*fosc*Bm*j*?],其中: Pt(标称输出功率)= Pout=84W Ko(窗口的铜填充系数)=0.4 Kc(磁芯填充系数)=1(对于铁氧体), 变压器磁通密度Bm=1500Gs j(电流密度): j=4A/mm2;Aw*Ae=84*1000000/[2*0.4*1*60*103*1500Gs*4*0.80]=0.7cm4 考虑到绕线空间,选择窗口面积大的磁芯,查表: ER40/45铁氧体磁芯的有效截面积Ae=1.51cm2 ER40/45的功率容量乘积为 Ap = 3.7cm4 >0.7cm4 故选择ER40/45铁氧体磁芯. 6.变压器初级匝数 1).由Np=Vinmin*Ton/[Ae*Bm],得: Np=80*7.5*10n-6/[1.52*10n-4*0.15] =26.31 取 Np =27T 7. 变压器次级匝数的计算. Ns1(42v)=Np/n=27/1.6=16.875 取Ns1 = 17T Ns2(15v)=(15+1)* Ns1/(42+1)=6.3T 取Ns2 = 7T
上传时间: 2022-04-15
上传用户:
DB9 DB15 DB25 DB37 DB50 Altium AD元件库 PCB封装库,90个器件封装,可以直接用于你的项目设计。PCB Library : DB9~50封装 .PcbLibComponent Count : 90DB9DB9 公 90°DB9/MDB9/MADB9/MSDB9/P_ADB9/S_ADB9SLWDB15FLWDB15FSDB15FSWDB15HDPFVDB25/MDB25BSMDB25FLDB25FLEDB25FLWDB25FSDB25FSWDB25RA/FDB25RA/MDB25SLDB25SLEDB37FLDB37FLEDB37FLWDB37FSDB37FSWDB37RA/FDB37RA/MDB37SLDB37SLEDB37SLWDB37SSDB37SSMDB37SSWDB50FLDB50FLEDB50FLW
标签: AD元件库
上传时间: 2022-04-17
上传用户:kingwide
2.4GHZ倒F及弯曲线PCB蓝牙低成本
上传时间: 2022-05-01
上传用户:
表贴插装电阻功率电阻Altium封装 AD封装库 2D+3D PCB封装库-19MB,Altium Designer设计的PCB封装库文件,集成2D和3D封装,可直接应用的到你的产品设计中。PCB库封装列表:PCB Library : 1.01-电阻.PcbLibComponent Count : 73Component Name-----------------------------------------------AXIAL0.3-1/8WAXIAL0.3-1/8W-VAXIAL0.4-1/4WAXIAL0.4-1/4W-VAXIAL0.5-1/2WAXIAL0.5-1/2W-VAXIAL0.6-1WAXIAL0.6-1W -VAXIAL0.8-2W-VAXIAL0.8-3WAXIAL1.0-3WAXIAL1.0-3W-VAXIAL1.2-5WAXIAL1.2-5W-FR 0201_LR 0201_MR 0201-HP_LR 0201-HP_MR 0402_LR 0402_MR 0402-HP_LR 0402-HP_MR 0603_LR 0603_MR 0603-HP_LR 0603-HP_MR 0805_LR 0805_MR 0805-HP_LR 0805-HP_MR 1206_LR 1206_MR 1206-HP_LR 1206-HP_MR 1210_LR 1210_MR 1210-HP_LR 1210-HP_MR 1812_LR 1812_MR 1812-HP_LR 1812-HP_MR 2010_LR 2010_MR 2010-HP_LR 2010-HP_MR 2512_LR 2512_MR 2512-HP_LR 2512-HP_MR SIP9-2.54RCA-8P4R-0402RCA-8P4R-0603RI 1.25W - 0.9mmRS 1/2WRS 1/2W-V4RS 1/4WRS 1/4W-V3RS 1/8WRS 1/8W-V2RS 1WRS 1W-F5RS 1W-V5RS 2WRS 2W-F5RS 2W-V6RS 3WRS 3W-F5RS 3W-V7RS 5WRS 5W-F5RS 5W-V8RX10-18*15*5
标签: altium designer
上传时间: 2022-05-04
上传用户:kingwide
基于TMS320F2812数字控制的三相逆变电源设计论文+原理图PCB摘要:随着社会的需求越来越高,传统的模拟电源的诸多缺陷越来越凸显, 本文在借鉴国内外相关研究的基础上,通过对空间矢量脉宽调制算法的分析,研究了数字信号处理器生成SVPWM 波形的实现方法及软件算法。并将相关方法应用于实践,研制了基于TMS320F2812数字控制的三相逆变电源,相关试验参数和结果表明:该设计提高了直流电压的利用率,使开关器件的损耗更小。此外,还提出了逆变电源闭环控制的PI控制算法,利用DSP的强大的数字信号处理能力,提高了系统的响应速度。经测试,系统实现了1~40V步进为1V的调压输出, 50Hz~1kHz步进2Hz的调频输出,输出电压恒定为36V时负载调整率小于5%。 关键词:全桥逆变,SVPWM,DSP1. 系统硬件设计3.1 不可控整流电路 采用整流桥加滤波,得到比较稳定的电压,电路如图3.1.1所示。 图3.1.1 不可控整流电路图电路实现AC-DC变换。本模块交流输入是经48V变压器将220V交流电压变压为48V交流电压后的输入电压,然后经过桥式整流器整流,再通过电容滤波,输出大小约为57.6V的直流电压。中间接一个保险丝来保护后面的元器件,或当后面电路短路时防止电容损坏。 一般来说,无法找到一个可以把电源的所有电流纹波都吸收的电容,所以通常用多个电容并联,这样流入每个电容的纹波电流就只有并联的电容个数分之一,每个电容就可以工作在低于它的最大额定纹波电流下,这里采用5个220µF的电容并联。另外输入滤波电容上一般要并上陶瓷电容(0.1µF),以吸收纹波电流的高频分量。两个20kΩ电阻的作用是使后
标签: 逆变电源
上传时间: 2022-05-05
上传用户:
part1也已上传:https://dl.21ic.com/download/part1-385449.html 本书系统介绍电容器的基础知识及在各种实际应用电路中的工作原理,包括 RC 积分、 RC 微分、滤波电容、旁路电容、去耦电容、耦合电容、谐振电容、自举电容、 PN 结电容、加速电容、密勒电容、安规电容等。本书强调工程应用,包含大量实际工作中的应用电路案例讲解,涉及高速 PCB、高频电子、运算放大器、功率放大、开关电源等多个领域,内容丰富实用,叙述条理清晰,对工程师系统掌握电容器的实际应用有很大的帮助,可作为初学者的辅助学习教材,也可作为工程师进行电路设计、制作与调试的参考书。第 1 章 电容器基础知识第 2 章 电容器标称容值为什么这么怪第 3 章 电容器为什么能够储能第 4 章 介电常数是如何提升电容量的第 5 章 介质材料是如何损耗能量的第 6 章 绝缘电阻与介电常数的关系第 7 章 电容器的失效模式第 8 章 RC 积分电路的复位应用第 9 章 门电路组成的积分型单稳态触发器第 10 章 555 定时芯片应用:单稳态负边沿触发器第 11 章 RC 多谐振荡器电路工作原理第 12 章 这个微分电路是冒牌的吗第 13 章 门电路组成的微分型单稳态触发器第 14 章 555 定时器芯片应用:单稳态正边沿触发器第 15 章 电容器的放电特性及其应用第 16 章 施密特触发器构成的多谐振荡器第 17 章 电容器的串联及其应用第 18 章 电容器的并联及其应用第 19 章 电源滤波电路基本原理第 20 章 从低通滤波器认识电源滤波电路第 21 章 从电容充放电认识低通滤波器第 22 章 降压式开关电源中的电容器第 23 章 电源滤波电容的容量越大越好吗第 24 章 电源滤波电容的容量多大才合适第 25 章 RC 滞后型移相式振荡电路第 26 章 电源滤波电容中的战斗机:铝电解电容第 27 章 旁路电容工作原理(数字电路)第 28 章 旁路电容 0.1μF 的由来(1)第 29 章 旁路电容 0 1μF 的由来(2)第 30 章 旁路电容的 PCB 布局布线第 31 章 PCB 平面层电容可以做旁路电容吗第 32 章 旁路电容工作原理(模拟电路)第 33 章 旁路电容与去耦电容的联系与区别第 34 章 旁路电容中的战斗机:陶瓷电容第 35 章 交流信号是如何通过耦合电容的第 36 章 为什么使用电容进行信号的耦合第 37 章 耦合电容的容量多大才合适
标签: 电容
上传时间: 2022-05-07
上传用户:
part2也已上传:https://dl.21ic.com/download/part2-385450.html 本书系统介绍电容器的基础知识及在各种实际应用电路中的工作原理,包括 RC 积分、 RC 微分、滤波电容、旁路电容、去耦电容、耦合电容、谐振电容、自举电容、 PN 结电容、加速电容、密勒电容、安规电容等。本书强调工程应用,包含大量实际工作中的应用电路案例讲解,涉及高速 PCB、高频电子、运算放大器、功率放大、开关电源等多个领域,内容丰富实用,叙述条理清晰,对工程师系统掌握电容器的实际应用有很大的帮助,可作为初学者的辅助学习教材,也可作为工程师进行电路设计、制作与调试的参考书。第 1 章 电容器基础知识第 2 章 电容器标称容值为什么这么怪第 3 章 电容器为什么能够储能第 4 章 介电常数是如何提升电容量的第 5 章 介质材料是如何损耗能量的第 6 章 绝缘电阻与介电常数的关系第 7 章 电容器的失效模式第 8 章 RC 积分电路的复位应用第 9 章 门电路组成的积分型单稳态触发器第 10 章 555 定时芯片应用:单稳态负边沿触发器第 11 章 RC 多谐振荡器电路工作原理第 12 章 这个微分电路是冒牌的吗第 13 章 门电路组成的微分型单稳态触发器第 14 章 555 定时器芯片应用:单稳态正边沿触发器第 15 章 电容器的放电特性及其应用第 16 章 施密特触发器构成的多谐振荡器第 17 章 电容器的串联及其应用第 18 章 电容器的并联及其应用第 19 章 电源滤波电路基本原理第 20 章 从低通滤波器认识电源滤波电路第 21 章 从电容充放电认识低通滤波器第 22 章 降压式开关电源中的电容器第 23 章 电源滤波电容的容量越大越好吗第 24 章 电源滤波电容的容量多大才合适第 25 章 RC 滞后型移相式振荡电路第 26 章 电源滤波电容中的战斗机:铝电解电容第 27 章 旁路电容工作原理(数字电路)第 28 章 旁路电容 0.1μF 的由来(1)第 29 章 旁路电容 0 1μF 的由来(2)第 30 章 旁路电容的 PCB 布局布线第 31 章 PCB 平面层电容可以做旁路电容吗第 32 章 旁路电容工作原理(模拟电路)第 33 章 旁路电容与去耦电容的联系与区别第 34 章 旁路电容中的战斗机:陶瓷电容第 35 章 交流信号是如何通过耦合电容的第 36 章 为什么使用电容进行信号的耦合第 37 章 耦合电容的容量多大才合
标签: 电容
上传时间: 2022-05-07
上传用户: