准确量化和预测陆地生态系统碳水通量对于理解陆气间相互作用,预测未来气候变化和控制温室效应具有重要意义。通量观测和模型模拟是目前研究碳水通量的两种主要方法。通量观测精度较高,但观测范围局限、站点分布不均匀,易受环境影响,难以区域扩展;模型模拟可实现不同尺度参量估算,但由于理想化假设、模型参数和驱动数据等限制,导致其模拟结果往往与真实值存在较大偏差。模型-数据融合方法主要是通过参数估计和数据同化两种技术集成观测和模型信息,建立两者相互制约调节的优化关系,以提高模型结果与真实值之间的匹配程度。基于该思路,本研究在地面观测数据、遥感卫星资料以及相关气候环境数据基础上,重点突破全球动态植被模型(Lund-Potsdam-Jena Dynamic Globa Vegetation Model.LPJ-DGVM)敏感参数优化方法,获取适宜中国的参数化方案:在此基础上,引入数据同化算法,将遥感卫星产品信息与模型相融合,在模拟过程中不断校正原有模型模拟轨迹,提高模型适用性。将以上改进的模型推广至中国区域,实现对20002015年中国地区总初级生产力(Gross Primary Productivity GPP)和敬发(Evapotranspiration,ET的空间格局模拟及分析。主要结论如下1)将LP」DGwM中所选出的22个可调参数(涉及光合、呼吸、水平衡异速生长、死亡、建立以及土壤和掉落物分解共七个作用领域)在各自取值范围内随机获得不同的参数组合,结果表明22个参数可引起GPP和ET模拟结果产生较大的不确定性,尤其集中在生长季。所有站点GPP相对不确定性(Relative Uncertainty,RU)基本保持在09-1.25之间,不具有明显的年际变异性:ET相对不确定性RU月变化趋势明显,且基本处于0.5以下,明显低于GPP,说明所筛选的22个参数对GP模拟产生的影响更为显著。
标签:
数据融合
上传时间:
2022-03-16
上传用户:shjgzh