虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

V-S

  • RS232串行接口电平转接器

    RS-232-C 是PC 机常用的串行接口,由于信号电平值较高,易损坏接口电路的芯片,与TTL电平不兼容故需使用电平转换电路方能与TTL 电路连接。本产品(转接器),可以实现任意电平下(0.8~15)的UART串行接口到RS-232-C/E接口的无源电平转接, 使用非常方便可靠。 什么是RS-232-C 接口?采用RS-232-C 接口有何特点?传输电缆长度如何考虑?答: 计算机与计算机或计算机与终端之间的数据传送可以采用串行通讯和并行通讯二种方式。由于串行通讯方式具有使用线路少、成本低,特别是在远程传输时,避免了多条线路特性的不一致而被广泛采用。 在串行通讯时,要求通讯双方都采用一个标准接口,使不同 的设备可以方便地连接起来进行通讯。 RS-232-C接口(又称 EIA RS-232-C)是目前最常用的一种串行通讯接口。它是在1970 年由美国电子工业协会(EIA)联合贝尔系统、 调制解调器厂家及计算机终端生产厂家共同制定的用于串行通讯的标准。它的全名是“数据终端设备(DTE)和数据通讯设备(DCE)之间串行二进制数据交换接口技术标准”该标准规定采用一个25 个脚的 DB25 连接器,对连接器的每个引脚的信号内容加以规定,还对各种信号的电平加以规定。(1) 接口的信号内容实际上RS-232-C 的25 条引线中有许多是很少使用的,在计算机与终端通讯中一般只使用3-9 条引线。(2) 接口的电气特性 在RS-232-C 中任何一条信号线的电压均为负逻辑关系。即:逻辑“1”,-5— -15V;逻辑“0” +5— +15V 。噪声容限为2V。即 要求接收器能识别低至+3V 的信号作为逻辑“0”,高到-3V的信号 作为逻辑“1”(3) 接口的物理结构 RS-232-C 接口连接器一般使用型号为DB-25 的25 芯插头座,通常插头在DCE 端,插座在DTE端. 一些设备与PC 机连接的RS-232-C 接口,因为不使用对方的传送控制信号,只需三条接口线,即“发送数据”、“接收数据”和“信号地”。所以采用DB-9 的9 芯插头座,传输线采用屏蔽双绞线。(4) 传输电缆长度由RS-232C 标准规定在码元畸变小于4%的情况下,传输电缆长度应为50 英尺,其实这个4%的码元畸变是很保守的,在实际应用中,约有99%的用户是按码元畸变10-20%的范围工作的,所以实际使用中最大距离会远超过50 英尺,美国DEC 公司曾规定允许码元畸变为10%而得出附表2 的实验结果。其中1 号电缆为屏蔽电缆,型号为DECP.NO.9107723 内有三对双绞线,每对由22# AWG 组成,其外覆以屏蔽网。2 号电缆为不带屏蔽的电缆。 2. 什么是RS-485 接口?它比RS-232-C 接口相比有何特点?答: 由于RS-232-C 接口标准出现较早,难免有不足之处,主要有以下四点:(1) 接口的信号电平值较高,易损坏接口电路的芯片,又因为与TTL 电平不兼容故需使用电平转换电路方能与TTL 电路连接。(2) 传输速率较低,在异步传输时,波特率为20Kbps。(3) 接口使用一根信号线和一根信号返回线而构成共地的传输形式, 这种共地传输容易产生共模干扰,所以抗噪声干扰性弱。(4) 传输距离有限,最大传输距离标准值为50 英尺,实际上也只能 用在50 米左右。针对RS-232-C 的不足,于是就不断出现了一些新的接口标准,RS-485 就是其中之一,它具有以下特点:1. RS-485 的电气特性:逻辑“1”以两线间的电压差为+(2—6) V 表示;逻辑“0”以两线间的电压差为-(2—6)V 表示。接口信号电平比RS-232-C 降低了,就不易损坏接口电路的芯片, 且该电平与TTL 电平兼容,可方便与TTL 电路连接。2. RS-485 的数据最高传输速率为10Mbps3. RS-485 接口是采用平衡驱动器和差分接收器的组合,抗共模干能力增强,即抗噪声干扰性好。4. RS-485 接口的最大传输距离标准值为4000 英尺,实际上可达 3000 米,另外RS-232-C接口在总线上只允许连接1 个收发器, 即单站能力。而RS-485 接口在总线上是允许连接多达128 个收发器。即具有多站能力,这样用户可以利用单一的RS-485 接口方便地建立起设备网络。因RS-485 接口具有良好的抗噪声干扰性,长的传输距离和多站能力等上述优点就使其成为首选的串行接口。 因为RS485 接口组成的半双工网络,一般只需二根连线,所以RS485接口均采用屏蔽双绞线传输。 RS485 接口连接器采用DB-9 的9 芯插头座,与智能终端RS485接口采用DB-9(孔),与键盘连接的键盘接口RS485 采用DB-9(针)。3. 采用RS485 接口时,传输电缆的长度如何考虑?答: 在使用RS485 接口时,对于特定的传输线经,从发生器到负载其数据信号传输所允许的最大电缆长度是数据信号速率的函数,这个 长度数据主要是受信号失真及噪声等影响所限制。下图所示的最大电缆长度与信号速率的关系曲线是使用24AWG 铜芯双绞电话电缆(线 径为0.51mm),线间旁路电容为52.5PF/M,终端负载电阻为100 欧 时所得出。(曲线引自GB11014-89 附录A)。由图中可知,当数据信 号速率降低到90Kbit/S 以下时,假定最大允许的信号损失为6dBV 时, 则电缆长度被限制在1200M。实际上,图中的曲线是很保守的,在实 用时是完全可以取得比它大的电缆长度。 当使用不同线径的电缆。则取得的最大电缆长度是不相同的。例 如:当数据信号速率为600Kbit/S 时,采用24AWG 电缆,由图可知最 大电缆长度是200m,若采用19AWG 电缆(线径为0。91mm)则电缆长 度将可以大于200m; 若采用28AWG 电缆(线径为0。32mm)则电缆 长度只能小于200m。

    标签: 232 RS 串行接口 电平

    上传时间: 2013-10-11

    上传用户:时代电子小智

  • Xilinx UltraScale:新一代架构满足您的新一代架构需求(EN)

      中文版详情浏览:http://www.elecfans.com/emb/fpga/20130715324029.html   Xilinx UltraScale:The Next-Generation Architecture for Your Next-Generation Architecture    The Xilinx® UltraScale™ architecture delivers unprecedented levels of integration and capability with ASIC-class system- level performance for the most demanding applications.   The UltraScale architecture is the industr y's f irst application of leading-edge ASIC architectural enhancements in an All Programmable architecture that scales from 20 nm planar through 16 nm FinFET technologies and beyond, in addition to scaling from monolithic through 3D ICs. Through analytical co-optimization with the X ilinx V ivado® Design Suite, the UltraScale architecture provides massive routing capacity while intelligently resolving typical bottlenecks in ways never before possible. This design synergy achieves greater than 90% utilization with no performance degradation.   Some of the UltraScale architecture breakthroughs include:   • Strategic placement (virtually anywhere on the die) of ASIC-like system clocks, reducing clock skew by up to 50%    • Latency-producing pipelining is virtually unnecessary in systems with massively parallel bus architecture, increasing system speed and capability   • Potential timing-closure problems and interconnect bottlenecks are eliminated, even in systems requiring 90% or more resource utilization   • 3D IC integration makes it possible to build larger devices one process generation ahead of the current industr y standard    • Greatly increased system performance, including multi-gigabit serial transceivers, I/O, and memor y bandwidth is available within even smaller system power budgets   • Greatly enhanced DSP and packet handling   The Xilinx UltraScale architecture opens up whole new dimensions for designers of ultra-high-capacity solutions.

    标签: UltraScale Xilinx 架构

    上传时间: 2013-11-13

    上传用户:瓦力瓦力hong

  • 采用TÜV认证的FPGA开发功能安全系统

    This white paper discusses how market trends, the need for increased productivity, and new legislation have accelerated the use of safety systems in industrial machinery. This TÜV-qualified FPGA design methodology is changing the paradigms of safety designs and will greatly reduce development effort, system complexity, and time to market. This allows FPGA users to design their own customized safety controllers and provides a significant competitive advantage over traditional microcontroller or ASIC-based designs. Introduction The basic motivation of deploying functional safety systems is to ensure safe operation as well as safe behavior in cases of failure. Examples of functional safety systems include train brakes, proximity sensors for hazardous areas around machines such as fast-moving robots, and distributed control systems in process automation equipment such as those used in petrochemical plants. The International Electrotechnical Commission’s standard, IEC 61508: “Functional safety of electrical/electronic/programmable electronic safety-related systems,” is understood as the standard for designing safety systems for electrical, electronic, and programmable electronic (E/E/PE) equipment. This standard was developed in the mid-1980s and has been revised several times to cover the technical advances in various industries. In addition, derivative standards have been developed for specific markets and applications that prescribe the particular requirements on functional safety systems in these industry applications. Example applications include process automation (IEC 61511), machine automation (IEC 62061), transportation (railway EN 50128), medical (IEC 62304), automotive (ISO 26262), power generation, distribution, and transportation. 图Figure 1. Local Safety System

    标签: FPGA 安全系统

    上传时间: 2013-11-05

    上传用户:维子哥哥

  • Cyclone V FPGA:采用低功耗28nm FPGA减少总系统成本

            本文主要介绍Cyclone V FPGA的一个很明显的特性,也可以说是一个很大的优势,即:采用低功耗28nm FPGA减少总系统成本

    标签: FPGA Cyclone 28 nm

    上传时间: 2013-10-26

    上传用户:huxiao341000

  • Arria V系列 FPGA芯片白皮书(英文)

      Arria V系列 FPGA芯片基本描述   (1)28nm FPGA,在成本、功耗和性能上达到均衡;   (2)包括低功耗6G和10G串行收发器;   (3)总功耗比6G Arria II FPGA低40%;   (4)丰富的硬核IP模块,提高了集成度   (5)目前市场上支持10.3125Gbps收发器技术、功耗最低的中端FPGA。

    标签: Arria FPGA V系列 芯片

    上传时间: 2013-10-26

    上传用户:wsq921779565

  • 基于Arria V和Cyclone V精度可调DSP模块的高性能DSP应用与实现

         本文是基于Arria V和Cyclone V精度可调DSP模块的高性能DSP应用与实现(英文资料)

    标签: DSP Cyclone Arria 精度可调

    上传时间: 2014-12-28

    上传用户:CHINA526

  • Altera公司 Cyclone V 28nm FPGA功耗优势

        Cyclone V FPGA功耗优势:采用低功耗28nm FPGA活的最低系统功耗(英文资料)    

    标签: Cyclone Altera FPGA 28

    上传时间: 2013-11-23

    上传用户:lijinchuan

  • Stratix V FPGA 28 nm创新技术超越摩尔定律

      本白皮书介绍 Stratix V FPGA 是怎样帮助用户提高带宽同时保持其成本和功耗预算不变。在工艺方法基础上,Altera 利用 FPGA 创新技术超越了摩尔定律,满足更大的带宽要求,以及成本和功耗预算。Altera Stratix ® V FPGA 通过 28-Gbps 高功效收发器突破了带宽限制,支持用户使用嵌入式 HardCopy ®模块将更多的设计集成到单片FPGA中,部分重新配置功能还提高了灵活性。

    标签: Stratix FPGA 28 创新技术

    上传时间: 2013-10-30

    上传用户:luke5347

  • Altera公司 Stratix V GX FPGA开发板电路图

        本资料是关于Altera公司 Stratix V GX FPGA开发板电路图的资料。资料包括开发板原理图、PCB图。

    标签: Stratix Altera FPGA GX

    上传时间: 2014-01-22

    上传用户:18707733937

  • 采用FPGA的多路高压IGBT驱动触发器研制

    为有效控制固态功率调制设备,提高系统的可调性和稳定性,介绍了一种基于现场可编程门阵列( FPGA)和微控制器(MCU) 的多路高压IGBT 驱动触发器的设计方法和实现电路。该触发器可选择内或外触发信号,可遥控或本控,能产生多路频率、宽度和延时独立可调的脉冲信号,信号的输入输出和传输都使用光纤。将该触发器用于高压IGBT(3300 V/ 800 A) 感应叠加脉冲发生器中进行实验测试,给出了实验波形。结果表明,该多路高压IGBT驱动触发器输出脉冲信号达到了较高的调整精度,频宽’脉宽及延时可分别以步进1 Hz、0. 1μs、0. 1μs 进行调整,满足了脉冲发生器的要求,提高了脉冲功率调制系统的性能。

    标签: FPGA IGBT 多路 驱动

    上传时间: 2013-10-22

    上传用户:zhulei420