虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

Unity

Unity平台提供一整套完善的软件解决方案[3-4],可用于创作、运营和变现任何实时互动的2D和3D内容,支持平台包括手机、平板电脑、PC、游戏主机、增强现实和虚拟现实设备。[3]
  • Unity最好的画线插件

    Unity最好的画线插件VectorGrid 包括各种类型的现 2D/3D

    标签: Unity VectorGrid

    上传时间: 2015-03-15

    上传用户:15313021993

  • Unity解包软件

    解压Unity的一个解包软件。。。。。。。。。

    标签: Unity 软件

    上传时间: 2021-08-22

    上传用户:Baccano

  • JavaScript高级程序设计(第2版)Unity

    JavaScript高级程序设计(第2版)Unity

    标签: JavaScript

    上传时间: 2022-02-20

    上传用户:

  • 模块电源功能性参数指标及测试方法

      模块电源的电气性能是通过一系列测试来呈现的,下列为一般的功能性测试项目,详细说明如下: 电源调整率(Line Regulation) 负载调整率(Load Regulation) 综合调整率(Conmine Regulation) 输出涟波及杂讯(Ripple & Noise) 输入功率及效率(Input Power, Efficiency) 动态负载或暂态负载(Dynamic or Transient Response) 起动(Set-Up)及保持(Hold-Up)时间 常规功能(Functions)测试 1. 电源调整率   电源调整率的定义为电源供应器于输入电压变化时提供其稳定输出电压的能力。测试步骤如下:于待测电源供应器以正常输入电压及负载状况下热机稳定后,分别于低输入电压(Min),正常输入电压(Normal),及高输入电压(Max)下测量并记录其输出电压值。 电源调整率通常以一正常之固定负载(Nominal Load)下,由输入电压变化所造成其输出电压偏差率(deviation)的百分比,如下列公式所示:   [Vo(max)-Vo(min)] / Vo(normal) 2. 负载调整率   负载调整率的定义为开关电源于输出负载电流变化时,提供其稳定输出电压的能力。测试步骤如下:于待测电源供应器以正常输入电压及负载状况下热机稳定后,测量正常负载下之输出电压值,再分别于轻载(Min)、重载(Max)负载下,测量并记录其输出电压值(分别为Vo(max)与Vo(min)),负载调整率通常以正常之固定输入电压下,由负载电流变化所造成其输出电压偏差率的百分比,如下列公式所示:   [Vo(max)-Vo(min)] / Vo(normal)    3. 综合调整率   综合调整率的定义为电源供应器于输入电压与输出负载电流变化时,提供其稳定输出电压的能力。这是电源调整率与负载调整率的综合,此项测试系为上述电源调整率与负载调整率的综合,可提供对电源供应器于改变输入电压与负载状况下更正确的性能验证。 综合调整率用下列方式表示:于输入电压与输出负载电流变化下,其输出电压之偏差量须于规定之上下限电压范围内(即输出电压之上下限绝对值以内)或某一百分比界限内。 4. 输出杂讯   输出杂讯(PARD)系指于输入电压与输出负载电流均不变的情况下,其平均直流输出电压上的周期性与随机性偏差量的电压值。输出杂讯是表示在经过稳压及滤波后的直流输出电压上所有不需要的交流和噪声部份(包含低频之50/60Hz电源倍频信号、高于20 KHz之高频切换信号及其谐波,再与其它之随机性信号所组成)),通常以mVp-p峰对峰值电压为单位来表示。   一般的开关电源的规格均以输出直流输出电压的1%以内为输出杂讯之规格,其频宽为20Hz到20MHz。电源实际工作时最恶劣的状况(如输出负载电流最大、输入电源电压最低等),若电源供应器在恶劣环境状况下,其输出直流电压加上杂讯后之输出瞬时电压,仍能够维持稳定的输出电压不超过输出高低电压界限情形,否则将可能会导致电源电压超过或低于逻辑电路(如TTL电路)之承受电源电压而误动作,进一步造成死机现象。   同时测量电路必须有良好的隔离处理及阻抗匹配,为避免导线上产生不必要的干扰、振铃和驻波,一般都采用双同轴电缆并以50Ω于其端点上,并使用差动式量测方法(可避免地回路之杂讯电流),来获得正确的测量结果。 5. 输入功率与效率   电源供应器的输入功率之定义为以下之公式:   True Power = Pav(watt) = Vrms x Arms x Power Factor 即为对一周期内其输入电压与电流乘积之积分值,需注意的是Watt≠VrmsArms而是Watt=VrmsArmsxP.F.,其中P.F.为功率因素(Power Factor),通常无功率因素校正电路电源供应器的功率因素在0.6~0.7左右,其功率因素为1~0之间。   电源供应器的效率之定义为为输出直流功率之总和与输入功率之比值。效率提供对电源供应器正确工作的验证,若效率超过规定范围,即表示设计或零件材料上有问题,效率太低时会导致散热增加而影响其使用寿命。 6. 动态负载或暂态负载   一个定电压输出的电源,于设计中具备反馈控制回路,能够将其输出电压连续不断地维持稳定的输出电压。由于实际上反馈控制回路有一定的频宽,因此限制了电源供应器对负载电流变化时的反应。若控制回路输入与输出之相移于增益(Unity Gain)为1时,超过180度,则电源供应器之输出便会呈现不稳定、失控或振荡之现象。实际上,电源供应器工作时的负载电流也是动态变化的,而不是始终维持不变(例如硬盘、软驱、CPU或RAM动作等),因此动态负载测试对电源供应器而言是极为重要的。可编程序电子负载可用来模拟电源供应器实际工作时最恶劣的负载情况,如负载电流迅速上升、下降之斜率、周期等,若电源供应器在恶劣负载状况下,仍能够维持稳定的输出电压不产生过高激(Overshoot)或过低(Undershoot)情形,否则会导致电源之输出电压超过负载组件(如TTL电路其输出瞬时电压应介于4.75V至5.25V之间,才不致引起TTL逻辑电路之误动作)之承受电源电压而误动作,进一步造成死机现象。 7. 启动时间与保持时间   启动时间为电源供应器从输入接上电源起到其输出电压上升到稳压范围内为止的时间,以一输出为5V的电源供应器为例,启动时间为从电源开机起到输出电压达到4.75V为止的时间。   保持时间为电源供应器从输入切断电源起到其输出电压下降到稳压范围外为止的时间,以一输出为5V的电源供应器为例,保持时间为从关机起到输出电压低于4.75V为止的时间,一般值为17ms或20ms以上,以避免电力公司供电中于少了半周或一周之状况下而受影响。    8. 其它 在电源具备一些特定保护功能的前提下,还需要进行保护功能测试,如过电压保护(OVP)测试、短路保护测试、过功保护等

    标签: 模块电源 参数 指标 测试方法

    上传时间: 2013-10-22

    上传用户:zouxinwang

  • UnityAPI

    Unity 中文API,以便学习和方便的在Unity上进行学习和编程。

    标签: Unity

    上传时间: 2015-04-04

    上传用户:魔兽世界85

  • Unity迷宫寻宝游戏

    Unity3D迷宫寻宝游戏,包含源码,适合初学者

    标签: Unity3D迷宫寻宝游戏

    上传时间: 2015-12-15

    上传用户:15885515561

  • Unity游戏

    Unity3d游戏,适合初学者,非常好的一款坦克大战游戏

    标签: Unity游戏

    上传时间: 2015-12-15

    上传用户:15885515561

  • UGUI界面

    完整的Unity界面设计,及Unity机器人行走,灯光效果、烟花和喷泉

    标签: UGUI

    上传时间: 2017-05-07

    上传用户:Josue

  • Unity Pro的Modicon M340模拟量IO模块用户手册_2012

    M340各模拟量模块资料,包括硬件配置 及软件里对各参数设置 以及编程所需资料

    标签: Modicon Unity M340 2012 Pro IO模块 模拟量 用户手册

    上传时间: 2018-12-31

    上传用户:YX_wucl

  • Multisim官方示例Multisim仿真例程基础电路范例135例合集

    Multisim官方示例Multisim仿真例程基础电路范例135例合集:Chapter 1 - RLC CircuitsChapter 2 - DiodesChapter 3 - TransistorsChapter 4 - AmplifiersChapter 5 - OpampsChapter 6 - FiltersChapter 7 - Miscellaneous CircuitsFundamental Circuits.pdf004 Parallel DC Circuits.ms10005 Series-Parrallel DC Circuit.ms10006 Current Analysis.ms10007 Millmans Theorem 1.ms10008 Millmans Theorem 2.ms10009 Kirchhoff's Current Law.ms10010 Thevenin's Theorem.ms10011 Superposition Principle.ms10012 Nortons Theorem and Source Conversion.ms10013 AC Voltage Measurement.ms10014 Frequency Response of the Series RL Network.ms10015 RL High and Low Pass Filter.ms10016 Frequency Response of the Series RC Network.ms10017 RC High and Low Pass Filter.ms10019 Center-Tapped Full-Wave Rectifier.ms10020 Bridge Rectifier.ms10021 Capacitor-Input Rectifier Filter.ms10022 Diode Clipper (Limiter).ms10023 Diode Clipper.ms10024 Diode Clamper (DC Restorer).ms10025 Diode Voltage Doubler.ms10026 Zener Diode and Voltage Regulation 1.ms10027 Zener Diode and Voltage Regulation 2.ms10028 Zener Diode and Voltage Regulation 3.ms10105 TTL Inverter.ms10107 TTL Gate.ms10109 OR Gate Circuit.ms10111 Over-Damp Circuit.ms10113 Critical-Damp Circuit.ms10115 Series RLC Circuit 1.ms10117 Clapp Oscillator.ms10119 Differential Amplifier 1.ms10121 Differential Amplifier in Common Mode.ms10123 LC Oscillator with Unity Gain Buffer.ms10125 Notch Filter.ms10127 PNP Differential Pair.ms10129 Crossover Network.ms10131 Second-Order High-Pass Chebyshev Filter.ms10133 Third-Order High-Pass Chebyshev Filter.ms10135 Fifth-Order High-Pass Filter.ms10

    标签: multisim

    上传时间: 2021-10-27

    上传用户:trh505