虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

Tn-kernel

  • ARM入门宝典

    目 录 前 言 ..........................................................................................2 1 嵌入式开发平台......................................................................4 1.1 ARM 的开发平台:.........................................................4 1.2 器件选型.........................................................................7 2 工具选择...............................................................................11 3 编译和连接............................................................................13 3.1 RVCT 的优化级别与优化方向.......................................16 3.2 Multifile compilation ......................................................21 3.3 调试...............................................................................22 4 操作系统...............................................................................23 4.1 哪里可以得到 os 软件包 (Open Source and Linux Kernel) ................................................................................25 4.2 安装镜像.......................................................................26 4.3 交叉编译.......................................................................26 总结..........................................................................................27

    标签: ARM 宝典

    上传时间: 2013-04-24

    上传用户:trepb001

  • 基于ARM的TKernel系统移植研究

    T-Kernel作为一种嵌入式操作系统,由于实时性和开源性,在嵌入式操作系统领域中的应用越来越广泛。ARM是一款比较好的微处理器,T-Kernel在ARM上的应用研究基本上是空白,所以结合两者进行研究促进T-Kernel在国内嵌入式领域的发展。同时,T-Kernel内部调度机制存在着优先级反转缺陷,优先级反向使得高优先级任务的执行时间无法预测,增加了实时系统的不确定性。早期的解决协议较好地解决了优先级反转问题,但同时也存在着自身不足之处。 针对T-Kernel存在的缺陷,在深入研究相关协议的基础上,本论文提出了一种新的改进的优先级继承协议。该协议设置超时保护机制,避免任务在获取信号量时长时间的阻塞,结合Havender提出的“有序资源使用法”防止死锁发生,给出该协议的分析过程,并把该协议结合到T-Kernel中。在这个基础之上,建立研究开发平台;针对硬件设备,研究引导程序的执行原理,实现系统的引导程序;构建T-Kennel内核;移植内核到开发板;最后对T-Kernel的启动过程进行了详细的分析。 T-Kernel在ARM上的移植研究,为嵌入式系统开发的提供了一种开发流程,同时对于T-Kernel的启动过程的分析,为以后的应用程序开发提供了一个接口;对于T-Kernel存在的优先级反转问题的解决,可以改进T-Kernel的实时性和灵活性,同时为实时系统的性能改进提供了参考。

    标签: TKernel ARM 移植

    上传时间: 2013-04-24

    上传用户:shangdafreya

  • Deep.Exploration.CAD.Edition.v5.7.2-CR

    关于如何从moonshell退出到烧录卡内核-Out on how to burn cards from moonshell kernel

    标签: Exploration Edition Deep CAD

    上传时间: 2013-08-05

    上传用户:vvbvvb123

  • 嵌入式linux usb wifi移植手册(原创)

    ■ 硬件平台:realARM 6410 ■ 操作系统:fedora kernel 2.6.33.3-85.fc13.i686.PAE ■ 交叉编译器:arm-none-linux-gnueabi gcc version 4.3.2 ■ WIFI模组:磊科NW336 芯片 realtek 8188cus 介绍在嵌入式linux方面如何移植usb wifi相关

    标签: linux wifi usb 嵌入式

    上传时间: 2013-07-14

    上传用户:lishuoshi1996

  • 时钟分相技术应用

    摘要: 介绍了时钟分相技术并讨论了时钟分相技术在高速数字电路设计中的作用。 关键词: 时钟分相技术; 应用 中图分类号: TN 79  文献标识码:A   文章编号: 025820934 (2000) 0620437203 时钟是高速数字电路设计的关键技术之一, 系统时钟的性能好坏, 直接影响了整个电路的 性能。尤其现代电子系统对性能的越来越高的要求, 迫使我们集中更多的注意力在更高频率、 更高精度的时钟设计上面。但随着系统时钟频率的升高。我们的系统设计将面临一系列的问 题。 1) 时钟的快速电平切换将给电路带来的串扰(Crosstalk) 和其他的噪声。 2) 高速的时钟对电路板的设计提出了更高的要求: 我们应引入传输线(T ransm ission L ine) 模型, 并在信号的匹配上有更多的考虑。 3) 在系统时钟高于100MHz 的情况下, 应使用高速芯片来达到所需的速度, 如ECL 芯 片, 但这种芯片一般功耗很大, 再加上匹配电阻增加的功耗, 使整个系统所需要的电流增大, 发 热量增多, 对系统的稳定性和集成度有不利的影响。 4) 高频时钟相应的电磁辐射(EM I) 比较严重。 所以在高速数字系统设计中对高频时钟信号的处理应格外慎重, 尽量减少电路中高频信 号的成分, 这里介绍一种很好的解决方法, 即利用时钟分相技术, 以低频的时钟实现高频的处 理。 1 时钟分相技术 我们知道, 时钟信号的一个周期按相位来分, 可以分为360°。所谓时钟分相技术, 就是把 时钟周期的多个相位都加以利用, 以达到更高的时间分辨。在通常的设计中, 我们只用到时钟 的上升沿(0 相位) , 如果把时钟的下降沿(180°相位) 也加以利用, 系统的时间分辨能力就可以 提高一倍(如图1a 所示)。同理, 将时钟分为4 个相位(0°、90°、180°和270°) , 系统的时间分辨就 可以提高为原来的4 倍(如图1b 所示)。 以前也有人尝试过用专门的延迟线或逻辑门延时来达到时钟分相的目的。用这种方法产生的相位差不够准确, 而且引起的时间偏移(Skew ) 和抖动 (J itters) 比较大, 无法实现高精度的时间分辨。 近年来半导体技术的发展, 使高质量的分相功能在一 片芯片内实现成为可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能优异的时钟 芯片。这些芯片的出现, 大大促进了时钟分相技术在实际电 路中的应用。我们在这方面作了一些尝试性的工作: 要获得 良好的时间性能, 必须确保分相时钟的Skew 和J itters 都 比较小。因此在我们的设计中, 通常用一个低频、高精度的 晶体作为时钟源, 将这个低频时钟通过一个锁相环(PLL ) , 获得一个较高频率的、比较纯净的时钟, 对这个时钟进行分相, 就可获得高稳定、低抖动的分 相时钟。 这部分电路在实际运用中获得了很好的效果。下面以应用的实例加以说明。2 应用实例 2. 1 应用在接入网中 在通讯系统中, 由于要减少传输 上的硬件开销, 一般以串行模式传输 图3 时钟分为4 个相位 数据, 与其同步的时钟信号并不传输。 但本地接收到数据时, 为了准确地获取 数据, 必须得到数据时钟, 即要获取与数 据同步的时钟信号。在接入网中, 数据传 输的结构如图2 所示。 数据以68MBös 的速率传输, 即每 个bit 占有14. 7ns 的宽度, 在每个数据 帧的开头有一个用于同步检测的头部信息。我们要找到与它同步性好的时钟信号, 一般时间 分辨应该达到1ö4 的时钟周期。即14. 7ö 4≈ 3. 7ns, 这就是说, 系统时钟频率应在300MHz 以 上, 在这种频率下, 我们必须使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型门延迟为340p s) , 如前所述, 这样对整个系统设计带来很多的困扰。 我们在这里使用锁相环和时钟分相技术, 将一个16MHz 晶振作为时钟源, 经过锁相环 89429 升频得到68MHz 的时钟, 再经过分相芯片AMCCS4405 分成4 个相位, 如图3 所示。 我们只要从4 个相位的68MHz 时钟中选择出与数据同步性最好的一个。选择的依据是: 在每个数据帧的头部(HEAD) 都有一个8bit 的KWD (KeyWord) (如图1 所示) , 我们分别用 这4 个相位的时钟去锁存数据, 如果经某个时钟锁存后的数据在这个指定位置最先检测出这 个KWD, 就认为下一相位的时钟与数据的同步性最好(相关)。 根据这个判别原理, 我们设计了图4 所示的时钟分相选择电路。 在板上通过锁相环89429 和分相芯片S4405 获得我们所要的68MHz 4 相时钟: 用这4 个 时钟分别将输入数据进行移位, 将移位的数据与KWD 作比较, 若至少有7bit 符合, 则认为检 出了KWD。将4 路相关器的结果经过优先判选控制逻辑, 即可输出同步性最好的时钟。这里, 我们运用AMCC 公司生产的 S4405 芯片, 对68MHz 的时钟进行了4 分 相, 成功地实现了同步时钟的获取, 这部分 电路目前已实际地应用在某通讯系统的接 入网中。 2. 2 高速数据采集系统中的应用 高速、高精度的模拟- 数字变换 (ADC) 一直是高速数据采集系统的关键部 分。高速的ADC 价格昂贵, 而且系统设计 难度很高。以前就有人考虑使用多个低速 图5 分相技术应用于采集系统 ADC 和时钟分相, 用以替代高速的ADC, 但由 于时钟分相电路产生的相位不准确, 时钟的 J itters 和Skew 比较大(如前述) , 容易产生较 大的孔径晃动(Aperture J itters) , 无法达到很 好的时间分辨。 现在使用时钟分相芯片, 我们可以把分相 技术应用在高速数据采集系统中: 以4 分相后 图6 分相技术提高系统的数据采集率 的80MHz 采样时钟分别作为ADC 的 转换时钟, 对模拟信号进行采样, 如图5 所示。 在每一采集通道中, 输入信号经过 缓冲、调理, 送入ADC 进行模数转换, 采集到的数据写入存储器(M EM )。各个 采集通道采集的是同一信号, 不过采样 点依次相差90°相位。通过存储器中的数 据重组, 可以使系统时钟为80MHz 的采 集系统达到320MHz 数据采集率(如图6 所示)。 3 总结 灵活地运用时钟分相技术, 可以有效地用低频时钟实现相当于高频时钟的时间性能, 并 避免了高速数字电路设计中一些问题, 降低了系统设计的难度。

    标签: 时钟 分相 技术应用

    上传时间: 2013-12-17

    上传用户:xg262122

  • S3C2410完全开发流程与源码

    本书面向由传统51单片机转向ARM嵌入式开发的硬件工程师、由硬件转嵌入式软件开发的工程师、没有嵌入式开发经验的软件工程师。分9个部分:1、开发环境建立2、S3C2410功能部件介绍与实验(含实验代码)3、bootloader vivi详细注释4、linux移植5、linux驱动6、yaffs文件系统详解7、调试工具8、GUI开发简介9、UC/OS移植通过学习第二部分,即可了解基于ARM CPU的嵌入式开发所需要的外围器件及其接口。对应的实验代码实现了对这些接口的操作,这可以让硬件工程师形成一个嵌入式硬件开发的概念。这部分也可以当作S3C2410的数据手册来使用。一个完整的嵌入式linux系统包含4部分内容:bootloader、parameters、kernel、root file system。3、4、5、6部分详细介绍了这4部分的内容,这是linux底层软件开发人员应该掌握的。通过学习这些章节,您可以详细了解到如何在一个裸板上裁减、移植linux,如何构造自己的根文件系统,如何编写适合客户需求的驱动程序——驱动程序这章将结合几个经典的驱动程序进行讲解。您还可以了解到在用在nand flash上的非常流行的yaffs文件系统是如何工作的,本书将结合yaffs代码详细介绍yaffs文件系统。第7部分介绍了嵌入式linux开发中使用gdb进行调试的详细过程。

    标签: S3C2410 开发流程 源码

    上传时间: 2013-10-31

    上传用户:yunfan1978

  • 基于OMAP1510的mp3播放器设计

      第一章 序論……………………………………………………………6   1- 1 研究動機…………………………………………………………..7   1- 2 專題目標…………………………………………………………..8   1- 3 工作流程…………………………………………………………..9   1- 4 開發環境與設備…………………………………………………10   第二章 德州儀器OMAP 開發套件…………………………………10   2- 1 OMAP介紹………………………………………………………10   2-1.1 OMAP是什麼?…….………………………………….…10   2-1.2 DSP的優點……………………………………………....11   2- 2 OMAP Architecture介紹………………………………………...12   2-2-1 OMAP1510 硬體架構………………………………….…12   2-2.2 OMAP1510軟體架構……………………………………...12   2-2.3 DSP / BIOS Bridge簡述…………………………………...13   2- 3 TI Innovator套件 -- OMAP1510 ……………………………..14   2-2.1 General Purpose processor -- ARM925T………………...14   2-2.2 DSP processor -- TMS320C55x …………………………15   2-2.3 IDE Tool – CCS …………………………………………15   2-2.4 Peripheral ………………………………………………..16   第三章 在OMAP1510上建構Embedded Linux System…………….17   3- 1 嵌入式工具………………………………………………………17   3-1.1 嵌入式程式開發與一般程式開發之不同………….….17   3-1.2 Cross Compiling的GNU工具程式……………………18   3-1.3 建立ARM-Linux Cross-Compiling 工具程式………...19   3-1.4 Serial Communication Program………………………...20   3- 2 Porting kernel………………………………………………….…21   3-2.1 Setup CCS ………………………………………….…..21   3-2.2 編譯及上傳Loader…………………………………..…23   3-2.3 編譯及上傳Kernel…………………………………..…24   3- 3 建構Root File System………………………………………..…..26   3-3.1 Flash ROM……………………………………………...26   3-3.2 NFS mounting…………………………………………..27   3-3.3 支援NFS Mounting 的kernel…………………………..27   3-3.4 提供NFS Mounting Service……………………………29   3-3.5 DHCP Server……………………………………………31   3-3.6 Linux root 檔案系統……………………………….…..32   3- 4 啟動及測試Innovator音效裝置…………………………..…….33   3- 5 建構支援DSP processor的環境…………………………...……34   3-5.1 Solution -- DSP Gateway簡介……………………..…34   3-5.2 DSP Gateway運作架構…………………………..…..35   3- 6 架設DSP Gateway………………………………………….…36   3-6.1 重編kernel……………………………………………...36   3-6.2 DEVFS driver…………………………………….……..36   3-6.3 編譯DSP tool和API……………………………..…….37   3-6.4 測試……………………………………………….…….37   第四章 MP3 Player……………………………………………….…..38   4- 1 MP3 介紹………………………………………………….…….38   4- 2 MP3 壓縮原理……………………………………………….….39   4- 3 Linux MP3 player – splay………………………………….…….41   4.3-1 splay介紹…………………………………………….…..41   4.3-2 splay 編譯………………………………………….…….41   4.3-3 splay 的使用說明………………………………….……41   第五章 程式改寫………………………………………………...…...42   5-1 程式評估與改寫………………………………………………...…42   5-1.1 Inter-Processor Communication Scheme…………….....42   5-1.2 ARM part programming……………………………..…42   5-1.3 DSP part programming………………………………....42   5-2 程式碼………………………………………………………..……43   5-3 雙處理器程式開發注意事項…………………………………...…47   第六章 效能評估與討論……………………………………………48   6-1 速度……………………………………………………………...48   6-2 CPU負載………………………………………………………..49   6-3 討論……………………………………………………………...49   6-3.1分工處理的經濟效益………………………………...49   6-3.2音質v.s 浮點與定點運算………………………..…..49   6-3.3 DSP Gateway架構的限制………………………….…50   6-3.4減少IO溝通……………….………………………….50   6-3.5網路掛載File System的Delay…………………..……51   第七章 結論心得…

    标签: OMAP 1510 mp3 播放器

    上传时间: 2013-10-14

    上传用户:a471778

  • 单片开关电源最新应用技术

    单片开关电源最新应用技术:突出实用性,全面系统深入地阐述了单片开关电源的最新应用技术。全书共十二章。第一章为单片开关电源综述。第二章至第十一章分别介绍了当今国际上最流行的TOPSwitch-Ⅱ系列、TOPSwitch-FX系列、TOPSwitch-GX系列、Tiny Switch-II、LinkSwitch、LinkSwitch-TN、LinkSwitch-HF、DPA-Switch、TEA1520、NCP1050、NCP1000、VIPer12A/22A等系列几百种单片开关电源的原理与应用。第十二章专门介绍了单片开关电源的设计要点及关键元器件选择。本书充分反映了近年来国内外在该领域的最新科研及应用成果。 第2版前言第一章 单片开关电源综述第一节 单片开关电源的发展概况及主要特点第二节 单片开关电源的产品分类第三节 单片开关电源的性能指标第二章 TOPSwitch-Ⅱ系列第二代单片开关电源的应用第一节 TOPSwitch-Ⅱ系列单片开关电源的性能特点第二节 TOPSwitch-Ⅱ系列单片开关电源的工作原理第三节 TOPSwitch-Ⅱ系列单片开关电源的快速设计法第四节 TOPSwitch-Ⅱ系列单片开关电源的典型应用第五节 TOPSwitch-Ⅱ系列产品在开关电源模块中的应用第六节 由TOPSwitch-Ⅱ系列产品构成的特种开关电源第七节 TOPSwitch-Ⅱ系列单片开关电源的设计要点第八节 TOPSwitch-Ⅱ系列单片开关电源的测试技术第三章 TOPSwitch-FX系列第三代单片开关电源的应用第一节 TOPSwitch-FX系列单片开关电源的性能特点第二节 TOPSwitch-FX系列单片开关电源的工作原理第三节 TOPSwitch-FX系列单片开关电源控制电路的设计第四节 TOPSwitch-FX系列单片开关电源的快速设计法第五节 TOPSwitch-FX系列单片开关电源的应用第六节 TOPSwitch-FX系列单片开关电源的设计要点第七节 TOPSwitch-FX系列单片开关电源的测试技术第四章 TOPSwitch-GX系列第四代单片开关电源的应用第一节 TOPSwitch-GX系列单片开关电源的性能特点第二节 TOPSwitch-GX系列单片开关电源的工作原理第三节 TOPSwitch-GX系列单片开关电源的快速设计法第四节 TOPSwitch-GX系列单片开关电源的应用第五节 TOPSwitch-GX系列单片开关电源的设计要点第六节 TOPSwitch-GX系列单片开关电源测试技术第五章 Tiny Switch-II系列第二代微型单片开关电源的应用第一节 Tiny Switch-II系列微型单片开关电源的性能特点第二节 Tiny Switch-II系列微型单片开关电源的工作原理第三节 Tiny Switch-II系列单片开关电源的应用第四节 Tiny Switch-II系列单片开关电源的设计要点及测试技术第六章 LinkSwitch系列单片开关电源的应用第一节 LinkSwitch系列单片开关电源的工作原理第二节 LinkSwitch系列单片开关电源的典型应用第三节 LinkSwitch系列单片开关电源的设计要点第四节 LinkSwitch系列单片开关电源模块中的应用第七章 LinkSwitch-TN系列单片开关电源的应用第八章 LinkSwitch-HF系列单片开关电源的应用第九章 DPA-Switch系列单片DC/DC电源变换器的应用第十章 TEA1520系列单片开关电源的应用第十一章 NCP1050系列单片开关电源的应用第十二章 单片开关电源的设计要点

    标签: 单片开关 电源 应用技术

    上传时间: 2013-11-23

    上传用户:liuxinyu2016

  • LED显示屏恒流驱动电路设计

    摘要: 本文介绍了L ED 显示屏常规型驱动电路的设计方式及其存在的缺陷, 提出了简单的L ED 显示屏恒流驱动方式及电路的实现。关键词:L ED 显示屏 动态扫描 驱动电路中图分类号: TN 873+ . 93   文献标识码:A    文章编号: 1005- 9490(2001) 03- 0252- 051 引 言  L ED 显示屏是80 年代后期在全球迅速发展起来的新型信息显示媒体, 它利用发光二极管构成的点阵模块或像素单元, 组成大面积显示屏幕, 以其可靠性高、使用寿命、环境适应能力强、性能价格比高、使用成本低等特点, 在信息显示领域已经得到了非常广泛的应用[ 1 ]。L ED 显示屏主要包括发光二极管构成的阵列、驱动电路、控制系统及传输接口和相应的应用软件等, 其中驱动电路设计的好坏, 对L ED 显示屏的显示效果、制作成本及系统的运行性能起着很重要的作用。所以, 设计一种既能满足控制驱动的要求, 同时使用器件少、成本低的控制驱动电路是很有必要的。本文就常规型驱动电路的设计作些分析并提出恒流驱动电路的设计方式。2 L ED 显示屏常规驱动电路的设计  L ED 显示屏驱动电路的设计, 与所用控制系统相配合, 通常分为动态扫描型驱动及静态锁存型驱动二大类。以下就动态扫描型驱动电路的设计为例为进行分析:动态扫描型驱动方式是指显示屏上的4 行、8 行、16 行等n 行发光二极管共用一组列驱动寄存器, 通过行驱动管的分时工作, 使得每行L ED 的点亮时间占总时间的1ön , 只要每行的刷新速率大于50 Hz, 利用人眼的视觉暂留效应, 人们就可以看到一幅完整的文字或画面[ 2 ]。常规型驱动电路的设计一般是用串入并出的通用集成电路芯片如74HC595 或MC14094 等作为列数据锁存, 以8050 等小功率N PN 三极管为列驱动, 而以达林顿三极管如T IP127 等作为行扫描管, 其电路如图1 所示。

    标签: LED 显示屏 恒流驱动 电路设计

    上传时间: 2014-02-19

    上传用户:lingzhichao

  • RT-Thread实时操作系统编程指南(版本 0.3.0)

    实时操作系统,Kernel部分完成于2006年上半年,其IPC部分甚至是年中时才具备相 应的雏形。最开始时是因为要为朋友做一个小型的手持设备,而本人起初又是另一国内老牌 实时操作系统:DOOLOO RTOS开发人员,但这个团队在2005年底已经解散。但朋友的系统要 上,用其他小型系统吗,一不熟悉,二看不上。答应朋友的事,总得有解决方法吧,即使是原来 的DOOLOO RTOS,因为其仿VxWorks结构,导致它的核心太大,包括太多不必要的东西(一套 完整的libc库),这些方案都否决了。怎么办?当时朋友那边也不算太急,先自己写一套内核吧。 这个就是源头!(后来虽然朋友的项目夭折了,但这套OS则保留下来了,并开源了,万幸) 1 序 3 1.1 RT-Thread诞生 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 艰难的发展期 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 一年增加0.0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Cortex-M3的变革 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5 面向对象设计方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.6 文档结构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 实时系统 7 2.1 嵌入式系统 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 实时系统 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 软实时与硬实时 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 快速入门 11 3.1 准备环境 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 初识RT-Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 系统启动代码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4 用户入口代码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.5 跑马灯的例子 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.6 生产者消费者问题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4 RT-Thread简介 25 4.1 实时内核 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 虚拟文件系统 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3 轻型IP协议栈 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.4 shell系统 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.5 图形用户界面 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.6 支持的平台 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5 内核对象模型 29 5.1 C语言的对象化模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2 内核对象模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6 线程调度与管理 39 6.1 实时系统的需求 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    标签: RT-Thread 实时操作系统 编程指南 版本

    上传时间: 2013-10-14

    上传用户:1234321@q