This document describes part number speciÞc changes to recommended operating conditions and revised electrical speciÞcations,as applicable, from Those described in the generalMPC7400 Hardware SpeciÞcations.SpeciÞcations provided in this Part Number SpeciÞcation supersede Those in theMPC7400 Hardware SpeciÞcationsdated 9/99(order #: MPC7400EC/D) for these part numbers only; speciÞcations not addressed herein are unchanged. This document isfrequently updated, refer to the website at http://www.mot.com/SPS/PowerPC/ for the latest version.Note that headings and table numbers in this data sheet are not consecutively numbered. They are intended to correspond to theheading or table affected in the general hardware speciÞcation.Part numbers addressed in this document are listed in Table A. For more detailed ordering information see Table B.
上传时间: 2013-11-19
上传用户:qiaoyue
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their productsor to discontinue any product or service without notice, and advise customers to obtain the latestversion of relevant information to verify, before placing orders, that information being relied onis current and complete. All products are sold subject to the terms and conditions of sale suppliedat the time of order acknowledgement, including Those pertaining to warranty, patentinfringement, and limitation of liability
上传时间: 2013-12-26
上传用户:凌云御清风
This white paper discusses how market trends, the need for increased productivity, and new legislation have accelerated the use of safety systems in industrial machinery. This TÜV-qualified FPGA design methodology is changing the paradigms of safety designs and will greatly reduce development effort, system complexity, and time to market. This allows FPGA users to design their own customized safety controllers and provides a significant competitive advantage over traditional microcontroller or ASIC-based designs. Introduction The basic motivation of deploying functional safety systems is to ensure safe operation as well as safe behavior in cases of failure. Examples of functional safety systems include train brakes, proximity sensors for hazardous areas around machines such as fast-moving robots, and distributed control systems in process automation equipment such as Those used in petrochemical plants. The International Electrotechnical Commission’s standard, IEC 61508: “Functional safety of electrical/electronic/programmable electronic safety-related systems,” is understood as the standard for designing safety systems for electrical, electronic, and programmable electronic (E/E/PE) equipment. This standard was developed in the mid-1980s and has been revised several times to cover the technical advances in various industries. In addition, derivative standards have been developed for specific markets and applications that prescribe the particular requirements on functional safety systems in these industry applications. Example applications include process automation (IEC 61511), machine automation (IEC 62061), transportation (railway EN 50128), medical (IEC 62304), automotive (ISO 26262), power generation, distribution, and transportation. 图Figure 1. Local Safety System
上传时间: 2013-11-05
上传用户:维子哥哥
Radio frequency (RF) can be a complex subject to navigate, but it does not have to be. If you are just getting started with radios or maybe you cannot find that old reference book about antenna aperture, this guide can help. It is intended to provide a basic understanding of RF technology, as well act as a quick reference for Those who “know their stuff” but may be looking to brush up on that one niche term that they never quite understood. This document is also a useful reference for Maxim’s products and data sheets, an index to deeper analysis found in our application notes, and a general reference for all things RF.
上传时间: 2013-10-23
上传用户:685
Radio frequency (RF) can be a complex subject to navigate, but it does not have to be. If you are just getting started with radios or maybe you cannot find that old reference book about antenna aperture, this guide can help. It is intended to provide a basic understanding of RF technology, as well act as a quick reference for Those who “know their stuff” but may be looking to brush up on that one niche term that they never quite understood. This document is also a useful reference for Maxim’s products and data sheets, an index to deeper analysis found in our application notes, and a general reference for all things RF.
标签: 无线技术
上传时间: 2013-10-08
上传用户:kinochen
This white paper discusses how market trends, the need for increased productivity, and new legislation have accelerated the use of safety systems in industrial machinery. This TÜV-qualified FPGA design methodology is changing the paradigms of safety designs and will greatly reduce development effort, system complexity, and time to market. This allows FPGA users to design their own customized safety controllers and provides a significant competitive advantage over traditional microcontroller or ASIC-based designs. Introduction The basic motivation of deploying functional safety systems is to ensure safe operation as well as safe behavior in cases of failure. Examples of functional safety systems include train brakes, proximity sensors for hazardous areas around machines such as fast-moving robots, and distributed control systems in process automation equipment such as Those used in petrochemical plants. The International Electrotechnical Commission’s standard, IEC 61508: “Functional safety of electrical/electronic/programmable electronic safety-related systems,” is understood as the standard for designing safety systems for electrical, electronic, and programmable electronic (E/E/PE) equipment. This standard was developed in the mid-1980s and has been revised several times to cover the technical advances in various industries. In addition, derivative standards have been developed for specific markets and applications that prescribe the particular requirements on functional safety systems in these industry applications. Example applications include process automation (IEC 61511), machine automation (IEC 62061), transportation (railway EN 50128), medical (IEC 62304), automotive (ISO 26262), power generation, distribution, and transportation. 图Figure 1. Local Safety System
上传时间: 2013-11-14
上传用户:zoudejile
This introduction covers the fundamentals of VHDL as applied to Complex ProgrammableLogic Devices (CPLDs). Specifically included are Those design practices that translate soundlyto CPLDs, permitting designers to use the best features of this powerful language to extractoptimum performance for CPLD designs.
上传时间: 2013-11-21
上传用户:gtf1207
a Java program that reads a file containing instructions written in self-defined file (TPL in this case), and executes Those instructions. This program should take the name of the TPL file as a command line parameter, and write its output to the console.
标签: file instructions self-defined containing
上传时间: 2015-01-11
上传用户:曹云鹏
XMDS is a code generator that integrates equations. You write them down in human readable form in a XML file, and it goes away and writes and compiles a C++ program that integrates Those equations as fast as it can possibly be done in your architecture.
标签: integrates generator equations readable
上传时间: 2014-11-27
上传用户:hebmuljb
This a separate release of the OpenSS7 X/Open XTI/TLI library, TLI modules (timod, tirdwr) and the INET driver (inet) that provides Unix98 compatible interface to Linux NET4 TCP/IP stacks, and all the necessary manpages and other documentation. Although these components are contained in our LiS and Linux Fast-STREAMS releases, this tarball configures, builds and installs these components separate from Those releases.
上传时间: 2015-03-12
上传用户:mikesering