This paper presents a Hidden Markov Model (HMM)-based speech
enhancement method, aiming at reducing non-stationary noise from speech
signals. The system is based on the assumption that the speech and the noise
are additive and uncorrelated. Cepstral features are used to extract STATISTICAL
information from both the speech and the noise. A-priori STATISTICAL
information is collected from long training sequences into ergodic hidden
Markov models. Given the ergodic models for the speech and the noise, a
compensated speech-noise model is created by means of parallel model
combination, using a log-normal approximation. During the compensation, the
mean of every mixture in the speech and noise model is stored. The stored
means are then used in the enhancement process to create the most likely
speech and noise power spectral distributions using the forward algorithm
combined with mixture probability. The distributions are used to generate a
Wiener filter for every observation. The paper includes a performance
evaluation of the speech enhancer for stationary as well as non-stationary
noise environment.
标签:
Telecommunications
Processing
Signal
for
上传时间:
2020-06-01
上传用户:shancjb