ertfv ertt vweretv werf r
上传时间: 2015-10-15
上传用户:wanqunsheng
E:\VISUAL C++MFC扩展编程实例 实例35 添加帮助菜单项,在本例中将向应用程序中的H e l p菜单中添加C o n t e n t s和S e a r c h 菜单项。
上传时间: 2014-01-09
上传用户:541657925
egdr grg g r dgr drg dgdr gdr gzdrg
上传时间: 2015-10-19
上传用户:alan-ee
本程序是D.R.J.OWEN主编的FINITE ELEMENTS IN PLASTICITYG一书中第八章例题的有限元程序,网上流传的这个版本的源码里有错误,我把它更正过来了,而且还添加了输入文本。绝对好东西啊。
标签: PLASTICITYG ELEMENTS FINITE OWEN
上传时间: 2014-01-23
上传用户:myworkpost
D.R.J.OWEN的经典著作--< 有限元程序>
上传时间: 2013-12-25
上传用户:dave520l
K-L的人脸识别 用过多次了,大家试试吧
上传时间: 2015-10-21
上传用户:gundan
In 1960, R.E. Kalman published his famous paper describing a recursive solution to the discrete-data linear filtering problem. Since that time, due in large part to advances in digital computing, the Kalman filter has been the subject of extensive research and application, particularly in the area of autonomous or assisted navigation.
标签: R.E. discrete-dat describing published
上传时间: 2015-10-22
上传用户:2404
In 1960, R.E. Kalman published his famous paper describing a recursive solution to the discretedata linear filtering problem [Kalman60]. Since that time, due in large part to advances in digital computing, the Kalman filter has been the subject of extensive research and application, particularly in the area of autonomous or assisted navigation. A very “friendly” introduction to the general idea of the Kalman filter can be found in Chapter 1 of [Maybeck79], while a more complete introductory discussion can be found in [Sorenson70], which also contains some interesting historical narrative.
标签: R.E. discretedata describing published
上传时间: 2015-10-22
上传用户:a673761058
完善的人事管理 人员职业规划与追踪管理:人员档案、奖惩、考评、调动、培训管理等等 l 多功能,适应面广的工资管理 支持工资多套帐,自定义工资项目明细及其计算公式,支持个人所得税计算,计时、计件工资等管理 l 超强的统计分析、报表打印、数据导出功能 各类常用的人事工资报表:人员档案、人员结构分析……,工资年报,工资条,工资单…… 支持EXCEL导入导出人员档案 l 网络办公及用户个性化设置 本系统支持网络多人同时使用,不同的用户可以根据业务需要设置软件,互不干扰 l 界面友好,图形导航帮您轻松上手 l 强大的组合查询功能,即可获得您需要的特定信息
上传时间: 2013-12-24
上传用户:hoperingcong
%DEFINEV Scaling vector and derivative % % [v,dv]= DEFINEV(g,x,l,u) returns v, distances to the % bounds corresponding to the sign of the gradient g, where % l is the vector of lower bounds, u is the vector of upper % bounds. Vector dv is 0-1 sign vector (See ?? for more detail.) % % Copyright (c) 1990-98 by The MathWorks, Inc. % $Revision: 1.2 $ $Date: 1998/03/21 16:29:10 $
标签: DEFINEV derivative distances Scaling
上传时间: 2013-12-24
上传用户:sz_hjbf