B树代码以及演示,主要是让大家理解B树是如何组成的,以及如何删除和查询
上传时间: 2013-12-15
上传用户:cmc_68289287
the calculator s usage! after you have inputed 2 operators,choose + - * / function! But the only situation I did t deal with is that when you choos + fuction ,and the operaters signs is like this -A+B,just turn it to B-A!
标签: calculator the operators function
上传时间: 2016-02-12
上传用户:lili123
比较牛b的一个计算器程序,源码在word文档里面,
上传时间: 2016-02-14
上传用户:z1191176801
DirectX not only provides fast access to the hardware and therefore incredibly speedy performance, but it also makes it much easier for hardware developers to produce new devices that work well in the Windows environment. The DirectX APIs take away the necessity of writing your own low-level, device-specific code to access hardware such as the display adapter and network card, making it much easier for you to write programs that take full advantage of the computer s multimedia capabilities.
标签: performance incredibly therefore hardware
上传时间: 2016-02-16
上传用户:秦莞尔w
Floyd-Warshall算法描述 1)适用范围: a)APSP(All Pairs Shortest Paths) b)稠密图效果最佳 c)边权可正可负 2)算法描述: a)初始化:dis[u,v]=w[u,v] b)For k:=1 to n For i:=1 to n For j:=1 to n If dis[i,j]>dis[i,k]+dis[k,j] Then Dis[I,j]:=dis[I,k]+dis[k,j] c)算法结束:dis即为所有点对的最短路径矩阵 3)算法小结:此算法简单有效,由于三重循环结构紧凑,对于稠密图,效率要高于执行|V|次Dijkstra算法。时间复杂度O(n^3)。 考虑下列变形:如(I,j)∈E则dis[I,j]初始为1,else初始为0,这样的Floyd算法最后的最短路径矩阵即成为一个判断I,j是否有通路的矩阵。更简单的,我们可以把dis设成boolean类型,则每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”来代替算法描述中的蓝色部分,可以更直观地得到I,j的连通情况。
标签: Floyd-Warshall Shortest Pairs Paths
上传时间: 2013-12-01
上传用户:dyctj
实现N阶线性方程组Ax=b逐次超松弛迭代法的通用程序
上传时间: 2014-06-08
上传用户:冇尾飞铊
// 移频选频原理 //Fvco=[(P*B)+A]*Frefin/R //P=32 //loop filter 100k----prescribe //R=12.8M/100K=128---Parameter1 //Fvco=频点*2+170280 -1400 //B=Fvco/32-----------Parameter2 //A=Fvco-32*B
标签: 100 prescribe Frefin filter
上传时间: 2013-12-26
上传用户:dancnc
B树及其B+树的实现代码,支持模版(数据类型,M值)
上传时间: 2016-02-22
上传用户:jhksyghr
I wrote this code early this year using ColdFire MCF5213 in codewarrior IDE. The LCD is STN B/W 320x240 dot matrix LCD. The code include 3 different fonts, and basic LCD driver. All original!
标签: this codewarrior ColdFire wrote
上传时间: 2013-12-20
上传用户:皇族传媒
数据结构B树中的增加,插入,删除,修改等具体操作
上传时间: 2013-12-13
上传用户:tedo811