neural Network 一个演示原理的代码,便于初学者学习。
上传时间: 2013-12-25
上传用户:181992417
k-step ahead predictions determined by simulation of the % one-step ahead neural Network predictor. For NNARMAX % models the residuals are set to zero when calculating the % predictions. The predictions are compared to the observed output. %
标签: ahead predictions determined simulation
上传时间: 2016-12-27
上传用户:busterman
Produces a matrix of derivatives of Network output w.r.t. % each Network weight for use in the functions NNPRUNE and NNFPE.
标签: Network w.r.t. derivatives Produces
上传时间: 2013-12-18
上传用户:sunjet
% Train a two layer neural Network with the Levenberg-Marquardt % method. % % If desired, it is possible to use regularization by % weight decay. Also pruned (ie. not fully connected) Networks can % be trained. % % Given a set of corresponding input-output pairs and an initial % Network, % [W1,W2,critvec,iteration,lambda]=marq(NetDef,W1,W2,PHI,Y,trparms) % trains the Network with the Levenberg-Marquardt method. % % The activation functions can be either linear or tanh. The % Network architecture is defined by the matrix NetDef which % has two rows. The first row specifies the hidden layer and the % second row specifies the output layer.
标签: Levenberg-Marquardt desired Network neural
上传时间: 2016-12-27
上传用户:jcljkh
This function applies the Optimal Brain Surgeon (OBS) strategy for % pruning neural Network models of dynamic systems. That is Networks % trained by NNARX, NNOE, NNARMAX1, NNARMAX2, or their recursive % counterparts.
标签: function strategy Optimal Surgeon
上传时间: 2013-12-19
上传用户:ma1301115706
Train a two layer neural Network with a recursive prediction error % algorithm ("recursive Gauss-Newton"). Also pruned (i.e., not fully % connected) Networks can be trained. % % The activation functions can either be linear or tanh. The Network % architecture is defined by the matrix NetDef , which has of two % rows. The first row specifies the hidden layer while the second % specifies the output layer.
标签: recursive prediction algorithm Gauss-Ne
上传时间: 2016-12-27
上传用户:ljt101007
8139 Network card linux driver
上传时间: 2016-12-28
上传用户:skhlm
structure EM算法 bayesian Network structure learning
标签: structure bayesian learning Network
上传时间: 2013-11-27
上传用户:ynsnjs
wireless sensor Network 电磁感应部分电路设计参考
标签: wireless Network sensor 电磁感应
上传时间: 2013-12-26
上传用户:sk5201314
wireless seneor Network 超声传感器部分电路原理图设计
标签: wireless Network seneor 超声传感器
上传时间: 2014-01-01
上传用户:asdkin