Wireless is one of the most rapidly developing technologies in our time, with dazzling new products and services emerging on an almost daily basis. These developments present enormous challenges for communications engineers, as the demand for increased wireless capacity grows explosively. Indeed, the discipline of wireless communications presents many challenges to designers that arise as a result of the demanding nature of the physical medium and the complexities in the dynamics of the underlying network.
标签: Communications Wireless Mimo
上传时间: 2020-05-28
上传用户:shancjb
Many wireless communications channels consist of multiple signal paths from the transmitter to receiver. This multiplicity of paths leads to a phenomenon known as multipath fading. The multiple paths are caused by the presence of objects in the physical environment that, through the mechanisms of propagation, alter the path of radiated energy. These objects are referred to as scatterers. In the past, researchers often looked at ways to mitigate multipath scattering, such as in diversity systems. Multiple-input, multiple-output (Mimo) systems, on the other hand, use multipath diversity to their advantage; a Mimo system has the ability to translate increased spatial diversity into increased channel capacity.
标签: Multiple-Output Multiple-Input Channel Models
上传时间: 2020-05-31
上传用户:shancjb
The family of recent wireless standards included the optional employment of Mimo tyechniques. This was motivated by the observation according to the classic Shannon-Hartley law the achiev- able channel capacity increases logarithmically with the transmit power. By contrast, the Mimo capacity increases linearly with the number of transmit antennas, provided that the number of receive antennas is equal to the number of transmit antennas.
标签: Simulation Modeling Network and
上传时间: 2020-05-31
上传用户:shancjb
Mobile and wireless communication systems are a prominent communications technology of the twenty-first century with profound economic and social impacts in practically all parts of the world. The current state of wireless communication systems allows for a much wider scope of applications than what it used to be originally, that is, to be a mobile extension of the public switched telephone network.
标签: Allocation Resource Mimo and
上传时间: 2020-06-01
上传用户:shancjb
The multiple-input multiple-output (Mimo) technique provides higher bit rates and better reliability in wireless systems. The efficient design of RF transceivers has a vital impact on the implementation of this technique. This first book is com- pletely devoted to RF transceiver design for Mimo communications. The book covers the most recent research in practical design and applications and can be an important resource for graduate students, wireless designers, and practical engineers.
标签: Transceiver Design RF
上传时间: 2020-06-01
上传用户:shancjb
Driven by the desire to boost the quality of service of wireless systems closer to that afforded by wireline systems, space-time processing for multiple-input multiple-output (Mimo) wireless communications research has drawn remarkable interest in recent years. Excit- ing theoretical advances, complemented by rapid transition of research results to industry products and services, have created a vibrant and growing area that is already established by all counts. This offers a good opportunity to reflect on key developments in the area during the past decade and also outline emerging trends.
标签: Space-Time Processing
上传时间: 2020-06-01
上传用户:shancjb
An acronym for Multiple-In, Multiple-Out, Mimo communication sends the same data as several signals simultaneously through multiple antennas, while still utilizing a single radio channel. This is a form of antenna diversity, which uses multiple antennas to improve signal quality and strength of an RF link. The data is split into multiple data streams at the transmission point and recombined on the receive side by another Mimo radio configured with the same number of antennas. The receiver is designed to take into account the slight time difference between receptions of each signal, any additional noise or interference, and even lost signals.
标签: Understanding_the_Basics_of_Mimo
上传时间: 2020-06-01
上传用户:shancjb
Mobile radio communications are evolving from pure telephony systems to multimedia platforms offering a variety of services ranging from simple file transfers and audio and video streaming, to interactive applications and positioning tasks. Naturally, these services have different constraints concerning data rate, delay, and reliability (quality-of-service (QoS)). Hence, future mobile radio systems have to provide a large flexibility and scal- ability to match these heterogeneous requirements.
标签: Communications Wireless Channels Mimo over
上传时间: 2020-06-01
上传用户:shancjb
1. 引言2. 概述3.3.1 100Mbps 以上的边缘速率3.3.2 99.999% 高可靠性和≤ 1ms 的超低时延3.3.3 1 个连接/ 平方米3.3.4 其他3.3.5 小结4.1.1 高频组网传播损耗与穿透损耗大,室外覆盖室内难4.1.2 无源分布式天线系统演进难、综合损耗大、互调干扰大3.1 5G 三大业务类型3.2 室内5G 业务及特征3.3 室内5G 业务对网络的需求4.2 多样化的业务要求网络具备更大的弹性容量4.3 行业应用要求网络具备极高可靠性4.4 四代共存网络及新业务发展要求网络具有高效运维、智能运营能力4.5 小结5.1 组网策略: 高中低频分层组网,提供更大容量5.2 Mimo 选择策略:标配4T4R,提供更好的用户体验5.3 方案选择策略:大容量数字化方案是必然选择5.4 容量策略:弹性容量,灵活按需满足业务需求5.5 可靠性策略:面向5G 业务的可靠性设计5.6 部署策略:端到端数字化部署,奠定网络运维和运营的基础5.7 网络运维策略:可视化运维,实现室内5G 网络可管可控5.8 网络运营策略:基于网络运营平台,支撑室内5G 网络智能运营5.9 小结
上传时间: 2022-01-30
上传用户:qdxqdxqdxqdx
在传输速率方面,802.11n可以将WLAN的传输速率由目前802.11a及802.11g提供的54Mbps,提高到300Mbps甚至高达600Mbps.得益于将Mimo(多入多出)与OFDM(正交频分复用)技术相结合而应用的Mimo OFDM技术,提高了无线传输质量,也使传输速率得到极大提升。现有的802.11n无线AP/路由设备主要是150M和300M产品,这两种产品的实用性较高,价格相对低廉。由于802.11n方案的规定,单天线产品只能是150M产品,只有双/天线以上,才能达到更高的速度现有的802.11n无线网卡主要是150M(手机)、300M(主流笔记本),450M(苹果笔记本)。使用的频率分别为2.4G(所有设备均支持)和5G(少量手机和多数的苹果设备)。尽管802.11n标称的数据都很大,最大理论值达到了600M,但实际上由于信道污染、各类干扰、阻挡物等,并不可能达到这种速度由于现在苹果设备的普及,5G的无线网卡均安装在最新的MBP/MBA/IPAD中,因此使用5G的用户也是较为可观的。同时在较新的Windows笔记本中,双频无线网卡也还是越来越多的被应用。
标签: 5G
上传时间: 2022-06-20
上传用户:jason_vip1