Power conversion by virtue of its basic role produces harmonics due to theslicing of either voltages or currents. To a large extent the pollution in theutility supply and the deterioration of the power quality has been generatedor created by non-linear converters. It is therefore ironic that power convertersshould now be used to clean up the pollution that they helped to create inthe first place.In a utility system, it is desirable to prevent harmonic currents (which resultin EMI and resonance problems) and limit reactive power flows (whichresult in transmission losses).Traditionally, shunt passive filters, comprised of tuned LC elements andcapacitor banks, were used to filter the harmonics and to compensate forreactive current due to non-linear loads. However, in practical applicationsthese methods have many disadvantages.
上传时间: 2013-11-05
上传用户:AISINI005
Abstract: Impedance mismatches in a radio-frequency (RF) electrical transmission line cause power loss andreflected energy. Voltage standing wave ratio (VSWR) is a way to measure transmission line imperfections. Thistutorial defines VSWR and explains how it is calculated. Finally, an antenna VSWR monitoring system is shown.
上传时间: 2013-10-19
上传用户:yuanwenjiao
Abstract: Field-programmable gate arrays (FPGAs) are used in a wide variety of applications and end markets, including digital signalprocessing, medical imaging, and high-performance computing. This application note outlines the issues related to powering FPGAs.It also discusses Maxim's solutions for powering Altera® FPGAs.
上传时间: 2013-11-02
上传用户:zhaoman32
While simplicity and high effi ciency (for cool running) areno longer optional features in isolated power supplies, itis traditionally diffi cult to achieve both. Achieving higheffi ciency often requires the use of advanced topologiesand home-brewed secondary synchronous rectifi cationschemes once reserved only for higher power applications.This only adds to the parts count and to the designcomplexity associated with the reference and optocouplercircuits typically used to maintain isolation. Fortunately, abreakthrough IC makes it possible to achieve both high efficiency and simplicity in a synchronous fl yback topology.The LT®3825 simplifi es and improves the performance oflow voltage, high current fl yback supplies by providingprecise synchronous rectifi er timing and eliminating theneed for optocoupler feedback while maintaining excellentregulation and superior loop response.
上传时间: 2013-10-16
上传用户:wayne595
Many complex systems—such as telecom equipment,memory modules, optical systems, networking equipment,servers and base stations—use FPGAs and otherdigital ICs that require multiple voltage rails that muststart up and shut down in a specific order, otherwise theICs can be damaged. The LTC®2924 is a simple andcompact solution to power supply sequencing in a 16-pinSSOP package (see Figures 1 and 2).
上传时间: 2013-10-29
上传用户:tonyshao
Automobile electronic systems place high demands ontoday’s DC/DC converters. They must be able to preciselyregulate an output voltage in the face of wide temperatureand input voltage ranges—including load dump transientsin excess of 60V and cold crank voltage drops to 4V. Theconverter must also be able to minimize battery drain inalways-on systems by maintaining high effi ciency over abroad load current range. Similar demands are made bymany 48V nonisolated telecom applications, 40V FireWireperipherals and battery-powered applications with autoplug adaptors. The LT3437’s best in classperformancemeets all of these requirements in a small thermallyenhanced 3mm × 3mm DFN package.
上传时间: 2013-10-15
上传用户:stampede
The LTC®3562 quad output step-down regulator is designedfor multicore handheld microprocessor applications thatoperate from a single Li-Ion battery. Its four monolithic, higheffi ciency buck regulators support Intel’s mobile CPU P-Stateand C-State energy saving operating modes. The outputvoltages are independently controllable via I2C, and eachoutput can be independently started and shut down. Designerscan choose from power saving pulse-skipping mode orBurst Mode® operation, or select low noise LDO mode. Thespace-saving LTC3562 is available in a 3mm × 3mm QFNpackage and requires few external components.
上传时间: 2013-10-07
上传用户:1583060504
The makers of handheld medical, industrial and consumerdevices use a wide variety of high resolution, small tomedium sized color TFT LCD displays. The power supplydesigners for these displays must contend with shrinkingboard area, tight schedules, and variations in displaytypes and feature requirements. The LTC®3524 simplifi esthe designer’s job by combining a versatile, easily programmed,TFT LCD bias supply and white LED backlightdriver in a low profi le 4mm × 4mm QFN package.
上传时间: 2013-10-26
上传用户:chens000
Piezoelectric motors are used in digital cameras for autofocus,zooming and optical image stabilization. Theyare relatively small, lightweight and effi cient, but theyalso require a complicated driving scheme. Traditionally,this challenge has been met with the use ofseparatecircuits, including a step-up converter and an oversizedgeneric full-bridge drive IC. The resulting high componentcount and large board space are especially problematicin the design of cameras for ever shrinking cell phones.The LT®3572 solves these problems by combining astep-up regulator and a dual full-bridge driver in a 4mm× 4mm QFN package. Figure 1 shows a typical LT3572Piezo motor drive circuit. A step-up converter is usedto generate 30V from a low voltage power source suchas a Li-Ion battery or any input power source within thepart’s wide input voltage range of 2.7V to 10V. The highoutput voltage of the step-up converter, adjustable upto 40V, is available for the drivers at the VOUT pin. Thedrivers operate in a full-bridge fashion, where the OUTAand OUTB pins are the same polarity as the PWMA andPWMB pins, respectively, and the OUTA and OUTB pinsare inverted from PWMA and PWMB, respectively. Thestep-up converter and both Piezo drivers have their ownshutdown control. Figure 2 shows a typical layout
上传时间: 2013-11-18
上传用户:hulee
The LTC®3610 is a high power monolithic synchronousstep-down DC/DC regulator that can deliver up to 12Aof continuous output current from a 4V to 24V (28Vmaximum) input supply. It is a member of a high currentmonolithic regulator family (see Table 1) that featuresintegrated low RDS(ON) N-channel top and bottomMOSFETs. This results in a high effi ciency and highpower density solution with few external components.This regulator family uses a constant on-time valleycurrent mode architecture that is capable of operatingat very low duty cycles at high frequency and with veryfast transient response. All are available in low profi le(0.9mm max) QFN packages.
上传时间: 2013-11-07
上传用户:moerwang