实验内容 信号与系统试验报告 自己的作业 1.设有两个信号: 要求x(t)和h(t)采样形成离散序列, 参数选择如下: 采样率Δ=4ms, 频率f=30Hz, a=2f2ln(M), M=2.5 在MATLAB下实现连续信号离散化, 并绘制出离散形式的信号波形。
上传时间: 2014-11-05
上传用户:xauthu
成績顯示三個部份abc #include<stdio.h> #include<stdlib.h> int main(void) { float gread printf("請輸入分數\n") scanf("%f",&gread) if(gread>=80&&gread<=100) printf("成績為A\n") else if(gread>=60&&gread<=79) { printf("成績為B\n") } else if(gread>=0&&gread<60) { printf("成績為C\n") } else { printf("分數輸入錯誤\n") } system("pause") return 0 }
标签: include stdlib float gread
上传时间: 2014-01-15
上传用户:waizhang
dd1压缩包里面是驱动源码 console压缩包里面是控制台源码 hide.exe是最终产品 使用方法: 1、将hide.exe复制到系统目录 2、运行cmd 3、hide -h 查看帮助 hide -i 安装驱动 hide -u 卸载驱动 hide -f -a filename 添加一个隐藏文件 by boywhp 07/09/03 Email:boywhp@126.com
上传时间: 2013-12-19
上传用户:lanwei
用windows画笔生成BMP文件f(x,y),图象宽为W,高为H,编写程序读取BMP文件,并生成新的图象g(x,y)。以BMP文件格式输出该图象。
上传时间: 2014-01-08
上传用户:hopy
M i c r o s o f t公司编译了一个所有可能的错误代码的列表,并且为每个错误代码分配了一个3 2 位的号码。Wi n E r r o r. h 头文件包含了M i c r o s o f t 公司定义的错误代码的列 表。
上传时间: 2013-12-08
上传用户:凌云御清风
dshfghfhhgsfgfghfhfghgfhfghfgh fg hfg hh ghghf hgf hghg gh fg hg hfg hfh f hg hgfh gkjh kjkh g yj fgh fh hh fhfg hf fg hf hfg h ghfghfg hfh fh f hfgh fgfgg jhgkj gflsdrflokjhgfd lkjhgflkjnhbv,mnbvdshfghfhhgsfgfghfhfghgfhfghfgh fg hfg hh ghghf hgf hghg gh fg hg hfg hfh f hg hgfh gkjh kjkh g yj fgh fh hh fhfg hf fg hf hfg h ghfghfg hfh fh f hfgh fgfgg jhgkj gflsdrflokjhgfd lkjhgflkjnhbv,mnbvdshfghfhhgsfgfghfhfghgfhfghfgh fg hfg hh ghghf hgf hghg gh fg hg hfg hfh f hg hgfh gkjh kjkh g yj fgh fh hh fhfg hf fg hf hfg h ghfghfg hfh fh f hfgh fgfgg jhgkj gflsdrflokjhgfd lkjhgflkjnhbv,mnbvdshfghfhhgsfgfghfhfghgfhfghfgh fg hfg hh ghghf hgf hghg gh fg hg hfg hfh f hg hgfh gkjh kjkh g yj fgh fh hh fhfg hf fg hf hfg h ghfghfg hfh fh f hfgh fgfgg jhgkj gflsdrflokjhgfd lkjhgflkjnhbv,mnbv
标签: dshfghfhhgsfgfghfhfghgfhfghfgh hfg ghghf fg
上传时间: 2017-09-26
上传用户:1159797854
F型端子的压接与检验
标签: 端子
上传时间: 2013-06-05
上传用户:eeworm
H桥的一些资料,自己整理得,包括一些电路图和pdf文档资料
标签: H桥驱动
上传时间: 2013-04-24
上传用户:banyou
H.264/AVC是由国际电信联合会的视频专家组和国际标准化组织的运动图像专家组组成的联合视频小组制定的下一代视频压缩标准。新标准采用了一些先进算法,因此具有优异的压缩性能和极好的网络亲和性,满足低码率情况下的高质量视频的传输。 H.264/AVC采用的先进算法包括多模式帧间预测、1/4像素精度预测、整数变换量化、去方块滤波和熵编码。本论文着重对整数变换与量化、去方块滤波做了研究。整数变换是一种只有加法和移位的运算,量化可以通过查表和乘法操作就可以完成,避免了反变换的时候失配问题,没有精度损失;去方块滤波是一种用来去除低码率情况下的每个宏块的块效应,提高了解码图像的外观。 本文主要从算法研究和硬件实现两方面着手,在算法研究方面设计了一个可视化测试软件,在硬件实现方面主要对整数变换、量化和去方块滤波做了研究和实现。视频压缩技术的关键在于视频压缩算法及其芯片的实现,FPGA可重复使用,设计修改灵活,片内资源丰富,具备DSP模块等优势。在本论文的目标实现部分模块FPGA的硬件设计,用Verilog完成了关键部分的设计。首先简要介绍了视频压缩基本原理,常用视频压缩标准及其特性以及国内外的研究动态,并对H.264标准基本档次所涉及的核心技术进行了详细介绍,两种分层结构分别讨论。其次在掌握了H.264.算法及编解码流程的基础上,设计了基于H.264编解码的可视化软件平台。然后详细介绍了整数变换、量化、反变换和反量化核心模块的设计和实现,并在Altera的软件和开发板上进行了仿真验证;对去方块滤波算法做了软件研究测试,并给出了一种改进的硬件整体结构设计。最后,对全文工作进行了总结和对未来研究工作做了展望。我在课题中所做的主要工作有: 1.查阅相关文献,熟悉H.264.标准及整数变换、量化和去方块滤波等算法。 2.用VC++完成了基于H.264编解码的可视化软件平台设计。 3.用Verilog完成了整数变换量化、反变换反量化模块FPGA设计与验证。 4.去方块滤波器的算法研究、仿真和硬件整体结构设计。
上传时间: 2013-04-24
上传用户:lanjisu111
H.264作为新一代视频编码标准,相比上一代视频编码标准MPEG2,在相同画质下,平均节约64﹪的码流。该标准仅设定了码流的语法结构和解码器结构,实现灵活性极大,其规定了三个档次,每个档次支持一组特定的编码功能,并支持一类特定的应用,因此。H.264的编码器的设计可以根据需求的不同而不同。 H.264虽然具有优异的压缩性能,但是其复杂度却比一般编码器高的多。本文对H.264进行了编码复杂度分析,并统计了整个软件编码中计算量的分布。H.264中采用了率失真优化算法,提高了帧内预测编码的效率。在该算法下进行帧内预测时,为了得到一个宏块的预测模式,需要进行592次率失真代价计算。因此为了降低帧内预测模式选择的计算复杂度,本文改进了帧内预测模式选择算法。实践证明,在PSNR值的损失可以忽略不计的情况下,该算法相比原算法,帧内编码时间平均节约60﹪以上,对编码的实时性有较大帮助。 为了实现实时编码,考虑到FPGA的高效运算速度和使用灵活性,本文还研究了H.264编码器基本档次的FPGA实现。首先研究了H.264编码器硬件实现架构,并对影响编码速度,且具有硬件实现优越性的几个重要部分进行了算法研究和FPGA.实现。本文主要研究了H.264编码器中整数DCT变换、量化、Zig-Zag扫描、CAVLC编码以及反量化、逆整数DCT变换等部分。分别对这些模块进行了综合和时序仿真,并将验证后通过的系统模块下载到Xilinx virtex-Ⅱ Pro的FPGA中,进行了在线测试,验证了该系统对输入的残差数据实时压缩编码的功能。 本文对H.264编码器帧内预测模式选择算法的改进,算法实现简单,对软件编码的实时性有很大帮助。本文对在单片FPGA上实现H.264编码器做出了探索性尝试,这对H.264编码器芯片的设计有着积极的借鉴性。
上传时间: 2013-06-13
上传用户:夜月十二桥