oreilly的书一般都经典,具体看书吧,oreilly.managing.projects.with.gnu.make.3rd.edition
标签: oreilly
上传时间: 2014-08-23
上传用户:himbly
ALICE 利用AIML (Artificial Intelligence Markup Language)来形成对你的查询和输入的响应。不像其它花费数千美元的商业聊天机器人软件,ALICE可以按照 GNU Public License免费使用。
标签: Intelligence Artificial Language Markup
上传时间: 2014-01-24
上传用户:xsnjzljj
一款LINUX下的下载软件,遵循GNU协议。
上传时间: 2014-01-21
上传用户:q123321
LINUX下的混音软件,遵循GNU协议。
上传时间: 2014-01-15
上传用户:磊子226
利用ATMEGA128芯片的双串口,UART0连接西门子MC55,UART1连接到RS232,将RS232接收到的数据包,通过MC55自带的TCP/IP栈以GPRS连接到INTERNET,并发送到制定IP地址和端口的主机。开发环境AVRSTUDIO,WINAVR,GNU C++,通过测试。
上传时间: 2013-12-21
上传用户:gundamwzc
3、使用如下命令更改密码: shell> mysqladmin -u root -p password ‘newpass’ Enter Password:******* 出现Enter Password的提示后输入原来的密码oldpass即可。 读者可以尝试其它所有本章介绍的方法。 4、首先以root用户的身份连接到服务器: shell> mysql -u root -p Enter password:******* 出现Enter password提后输入root用户的密码,然后即进入mysql客户机的交互模式,可以看到下面的提示: Welcome to the MySQL monitor. Commands end with or \g. Your MySQL connection id is 4 to server version: 3.23.25-beta-log Type help or \h for help. Type \c to clear the buffer mysql> 然后发布查询,直接键入题目中的语句: mysql> SELECT User,Host FROM mysql.user
标签: Enter mysqladmin Password password
上传时间: 2016-03-17
上传用户:talenthn
Sofia-SIP is an open-source SIP User-Agent library, compliant with the IETF RFC3261 specification. It can be used as a building block for SIP client software for uses such as VoIP, IM, and many other real-time and person-to-person communication services. The primary target platform for Sofia-SIP is GNU/Linux. Sofia-SIP is based on a SIP stack developed at the Nokia Research Center.
标签: specification open-source User-Agent Sofia-SIP
上传时间: 2016-03-20
上传用户:洛木卓
杜云海的学习报告,详细介绍ARM映象文件及执行机理,及ARM Bios源码分析,及GNU之映象机理等
上传时间: 2013-12-26
上传用户:cccole0605
SimpleScaler(RISC处理器仿真分析程序)指令集相对应的汇编,链接程序源码。由通用GNU binutils改写而得。应在Linux下编译,运行。
标签: SimpleScaler RISC 处理器 仿真分析
上传时间: 2014-01-11
上传用户:qiao8960
On-Line MCMC Bayesian Model Selection This demo demonstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and details are presented in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Sequential Bayesian Estimation and Model Selection Applied to Neural Networks . Technical report CUED/F-INFENG/TR 341, Cambridge University Department of Engineering, June 1999. After downloading the file, type "tar -xf version2.tar" to uncompress it. This creates the directory version2 containing the required m files. Go to this directory, load matlab5 and type "smcdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.
标签: demonstrates sequential Selection Bayesian
上传时间: 2016-04-07
上传用户:lindor