Computational models are commonly used in engineering design and scientific discovery activities for simulating complex physical systems in disciplines such as fluid mechanics, structural dynamics, heat transfer, nonlinear structural mechanics, shock physics, and many others. These simulators can be an enormous aid to engineers who want to develop an understanding and/or predictive capability for complex behaviors typically observed in the corresponding physical systems. Simulators often serve as virtual prototypes, where a set of predefined system parameters, such as size or location dimensions and material properties, are adjusted to improve the performance of a system, as defined by one or more system performance objectives. Such optimization or tuning of the virtual prototype requires executing the simulator, evaluating performance objective(s), and adjusting the system parameters in an iterative, automated, and directed way. System performance objectives can be formulated, for example, to minimize weight, cost, or defects; to limit a critical temperature, stress, or vibration response; or to maximize performance, reliability, throughput, agility, or design robustness. In addition, one would often like to design computer experiments, run parameter studies, or perform uncertainty quantification (UQ). These approaches reveal how system performance changes as a design or uncertain input variable changes. Sampling methods are often used in uncertainty quantification to calculate a distribution on system performance measures, and to understand which uncertain inputs contribute most to the variance of the outputs. A primary goal for Dakota development is to provide engineers and other disciplinary scientists with a systematic and rapid means to obtain improved or optimal designs or understand sensitivity or uncertainty using simulationbased models. These capabilities generally lead to improved designs and system performance in earlier design stages, alleviating dependence on physical prototypes and testing, shortening design cycles, and reducing product development costs. In addition to providing this practical environment for answering system performance questions, the Dakota toolkit provides an Extensible platform for the research and rapid prototyping of customized methods and meta-algorithms
标签: Optimization and Uncertainty Quantification
上传时间: 2016-04-08
上传用户:huhu123456
VIP专区-嵌入式/单片机编程源码精选合集系列(149)资源包含以下内容:1. 51+lcd1602显示,程序非常清晰明白,很适合初学者!.2. 1. UC/OS 8051中完全应用。 2. 显示各个任务的执行时间, 执行时间占总时间百分比, tick计数器 3.任务中信号量,消息以及消息队列的使用。 我自己仔细测试过了.3. 实例仿真原理图和结果.4. 富士N系列可编程控制器PLC编程手册,介绍Flex N系列PLC的情况和其操作。.5. apr9600简介.6. Microsoft Extensible Firmware Initiative FAT32 File System Specification.7. 用于嵌入式驱动编程学习的一本经典的教材.8. small rtos 1.20 一套单片机嵌入式操作系统,由陈明计开发.9. WIFI driver from marvell website, 8.70 for gspi..10. WIFI driver from marvell website, 7.73 for sdio..11. 关于USB的相关芯片的应用说明.12. 关于基本嵌入式系统介绍和c语言编程的书籍.13. 61编的12864程序 有的12864可能有问题.14. PLC控制日本安川伺服电机的源程序。控制方式为串口控制.15. 精品资料-嵌入式系统经典教材 系统讲解了嵌入式开发.16. tms320c2812的flash驱动程序.17. This is a document for CYCLONE Develop Kits type LJ-FN300 FPGANIOS. Wish this would help you to find.18. 基于NuCleus操作系统下的一个GUI界面.19. 用三星的44b0控制的zlg7290的源码.20. 三星的44b0的完整启动程序 启动后让几个led闪烁.21. ID卡门禁系统.22. PIC单片机产生警报声的程序。频率从1.8K-3.5K匀速增加.23. PCI总线操作的相关内容.24. 一个电子表程序.25. msp430单片机的lcd显示程序 可形成循坏显示功能.26. 车辆检测通过的电路原理图.27. 电能计量芯片SA9904的读写程序.28. FS9315核心板和底板原理图.29. FPGA.30. 这是is4002语音芯片的录放音程序.31. 远程采集系统嵌入式WEB端java applet动态曲线显示采集量的代码.32. GUI入门的好教材, 可以配套ARM使用, 内含有一些地层的初级函数和硬件接口..33. 基于ATmega16的BC7281键盘显示源码,拿过来就 可以用.34. 基于ATMEGA16的时钟芯片原代码.35. 基于ATMEGA16的温度传感器原代码.36. 基于ATmega16的12864液晶显示源代码.37. 基于ATMEGA16的NRF905无线通信的C程序源代码.38. 基于ATMEGA16的AD转换的C程序源代码.39. 基于ATMEGA16的DA转换的C程序源代码.40. 基于ATMEGA16的步进电机的驱动程序.
上传时间: 2013-06-18
上传用户:eeworm