虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

DataSets

  • Bi-density twin support vector machines

    In this paper we present a classifier called bi-density twin support vector machines (BDTWSVMs) for data classification. In the training stage, BDTWSVMs first compute the relative density degrees for all training points using the intra-class graph whose weights are determined by a local scaling heuristic strategy, then optimize a pair of nonparallel hyperplanes through two smaller sized support vector machine (SVM)-typed problems. In the prediction stage, BDTWSVMs assign to the class label depending on the kernel density degree-based distances from each test point to the two hyperplanes. BDTWSVMs not only inherit good properties from twin support vector machines (TWSVMs) but also give good description for data points. The experimental results on toy as well as publicly available DataSets indicate that BDTWSVMs compare favorably with classical SVMs and TWSVMs in terms of generalization

    标签: recognition Bi-density machines support pattern vector twin for

    上传时间: 2019-06-09

    上传用户:lyaiqing

  • Machine learning

    Machine learning is about designing algorithms that automatically extract valuable information from data. The emphasis here is on “automatic”, i.e., machine learning is concerned about general-purpose methodologies that can be applied to many DataSets, while producing something that is mean- ingful. There are three concepts that are at the core of machine learning: data, a model, and learning.

    标签: learning Machine

    上传时间: 2020-06-10

    上传用户:shancjb

  • 《Python深度学习》2018中文版+源代码

    这是我在做大学教授期间推荐给我学生的一本书,非常好,适合入门学习。《python深度学习》由Keras之父、现任Google人工智能研究员的弗朗索瓦•肖莱(François Chollet)执笔,详尽介绍了用Python和Keras进行深度学习的探索实践,包括计算机视觉、自然语言处理、产生式模型等应用。书中包含30多个代码示例,步骤讲解详细透彻。作者在github公布了代码,代码几乎囊括了本书所有知识点。在学习完本书后,读者将具备搭建自己的深度学习环境、建立图像识别模型、生成图像和文字等能力。但是有一个小小的遗憾:代码的解释和注释是全英文的,即使英文水平较好的朋友看起来也很吃力。本人认为,这本书和代码是初学者入门深度学习及Keras最好的工具。作者在github公布了代码,本人参照书本,对全部代码做了中文解释和注释,并下载了代码所需要的一些数据集(尤其是“猫狗大战”数据集),并对其中一些图像进行了本地化,代码全部测试通过。(请按照文件顺序运行,代码前后有部分关联)。以下代码包含了全书约80%左右的知识点,代码目录:2.1: A first look at a neural network( 初识神经网络)3.5: Classifying movie reviews(电影评论分类:二分类问题)3.6: Classifying newswires(新闻分类:多分类问题 )3.7: Predicting house prices(预测房价:回归问题)4.4: Underfitting and overfitting( 过拟合与欠拟合)5.1: Introduction to convnets(卷积神经网络简介)5.2: Using convnets with small DataSets(在小型数据集上从头开始训练一个卷积网络)5.3: Using a pre-trained convnet(使用预训练的卷积神经网络)5.4: Visualizing what convnets learn(卷积神经网络的可视化)

    标签: python 深度学习

    上传时间: 2022-01-30

    上传用户: