《Fuzzy Relational Calculus Toolbox, Rel.1.01》The toolbox provides functions and original algorithms for solving direct and inverse problems. Author: Yordan Kyosev & Ketty Peeva
标签: Relational algorithms functions Calculus
上传时间: 2015-04-18
上传用户:royzhangsz
matlab 多参数积分工具箱 multivariable Calculus toolbox
标签: multivariable Calculus toolbox matlab
上传时间: 2016-06-02
上传用户:kiklkook
number Calculus, gauss method, jordan description
标签: description Calculus number method
上传时间: 2017-04-10
上传用户:rocwangdp
a collection of M-files to study concepts in the following areas of Fuzzy-Set-Theory: Fuzzy or Multivalued Logic, The Calculus of Fuzzy, Quantities, Approximate Reasoning, Possibility Theory, Fuzzy Control, Neuro-Fuzzy Systems.
标签: Fuzzy-Set-Theory collection following concepts
上传时间: 2015-04-03
上传用户:lili123
Algebra, Topology, Differential Calculus, and Optimization Theory For Computer Science and Machine Learning一本数学大全书,由Jean Gallier and Jocelyn Quaintance合著。
上传时间: 2022-05-05
上传用户:默默
Abstract: A sliding mode observer and fractional-order phase-locked loop (FO-PLL) method is proposed for the sensorless speed control of a permanent magnet synchronous motor (PMSM).The saturation function is adopted in order to reduce the chattering phenomenon caused by the sliding mode observer. In this proposed FO-PLL, method, a regulable fractional order r is involved, which means that the FO-PLL provides an extra degree of freedom. In fact, the conventional phase-locked loop (PLL) applied in sensorless PMSM control can be seen as a special case of the proposed FO-PLL. By selecting a proper fractional order r a better performance may be achieved. The computer simulation results demonstrate the effectiveness of the proposed method.Key words: fractional Calculus; fractional order phase-locked loop; sensorless control; sliding mode observer; permanent magnet synchronous motor; speed controll
上传时间: 2022-06-18
上传用户:
分数阶微积分(Fractional Calculus)作为微积分的一条分支在三百多年的发展历程中已经逐步形成自己特有的体系,在很多的领域中已经显示出独特的处理能力,尤其是在电磁学、化学、控制学和力学等一些学科得到了广泛的应用。在信息信号处理理论中,微积分作为一种基本的数学运算得到了广泛的应用,但其中的微积分运算都是基于整数阶的,如一阶微积分和二阶微积分等。然而随着科学技术与计算能力的发展,越来越多的非线性问题成为了研究的工作重点,分数阶微积分在此领域强大的处理能力就逐步的体现出来。分数阶微积分是相对于传统的整数阶微积分提出的,传统的整数阶微积分的运算阶次都是基于整数的情况定义的,而分数阶微积分是将传统意义上的整数阶微积分的阶次从整数推广至分数,乃至整个无理小数和分数。接下来我们先回顾下传统的微积分。
上传时间: 2022-06-25
上传用户: