近年来,便携式设备如掌上电脑、个人通信设备等电子消费产品得到了飞速发展,这些电子产品均采用锂电池供电。锂离子电池的电压随着充放电状态的改变会发生很大变化,使得电池电压可能高于、也可能低于系统所需电源电压,需要升压/降压DCDC转换器将变化的电池电压转换为稳定的直流电压,实现升压模式与降压模式之间的平滑过渡和提高过渡模式的效率是升压/降压DC-DC转换器研究的热点和难点。本文首先介绍了H桥升压降压转换器的工作原理与存在的问题。系统在升压和降压转换过程中,会发生跳周期现象,产生较大输出纹波,因此本文提出在该转换模式下,增加H桥非反相工作模式作为过渡模式,以减小系统的输出纹波。在过渡模式下为了得到高的转换效率,因此本文改进H桥非反相工作模式,来提高系统的转换效率。其次,本文推导出H桥升压/降压转换器的三种工作模式包括升压模式、过渡模式、降压模式的小信号模型,用 sisotool工具搭建系统频域模型,确定系统的补偿方案,再用 simulink搭建整个H桥升压降压转換器系统,在三种工作模式下验证补偿方案。最后,本论文采用035 um TSMCCMOS工艺设计H桥升压/降压DCDC转换器,可输入电压范围是2.7-52V,VFB为1.2V,开关频率范围为300KHz-2MHz,输出最大电流为600mA。提取电路网表,在开关频率为1MH条件下,Hspice仿真与分析,从仿真结果上看,当输出电阻分别为R=5.59和R=339重载情况下下,系统在升压模式的转换效率为91%和94%、在升压降压模式的转换效率为75%和83%、在降压模式下转换效为73%和79%,过渡模式下的纹波为30mV:当输出电阻R=509轻载条件下,输入电压分别为2.7V、3.3V、4.2V,系统的转换效率分别为79%、65%、73%以上结果表明本文所实现的DC电路达到高效、纹波小的要求
标签: DC-DC转换器
上传时间: 2022-04-08
上传用户:kingwide
如果在调谐器或电视机附近使用本机或任何其他使用微处理器的电子设备,则可能会产生图像的噪声或干扰。如果发生这种情况,请采取以下步骤将本机安装在尽可能远离调谐器或T的地方。远离调谐器或T,远离本机的电源线和输入/输出连接电缆。尤其在使用室内天线或300欧姆馈线。我们建议使用室外天线和75 Q / ohm同轴电缆Noise or disturbance of the picture may be generated if this unit or any other electronic equipment using microprocessors is used near a tuner or TV If this happens, take the following stepsInstall this unit as far away as possible from the tuner or T Run the antenna wires from the tuner or T away from this unit ' s power supply cord and input/output connection cables. Noise or disturbance tends to occur particularly when using indoor antennas or300 ohm feeder wires. We recommend using outdoor antennas and 75 Q/ohm coaxial cables
标签: 功放
上传时间: 2022-04-22
上传用户:
为适应双向DC/DC功率变换的电流采样需求,一种高精度高边电流采样电路被提出。其基本思想是在功率电路的高边串入采样电阻,借助电流镜原理并引入偏置电流电路,将双向电流均转换为正向电压输出。通过理论分析与仿真结合的方法对电流镜采样原理及4种不同的偏置电流电路方案进行对比,最后通过实验数据验证了高精度高边电流采样电路的有效性。实验数据表明,该采样电路可在-25~75℃的温度工作范围内,针对-10~+10 A范围内的电流采样实现优于5%的采样精度。Current sensing plays an important role in controlling,monitoring or protection functions of power systems.To meet the current sensing requirement of bidirectional DC/DC converters,a high-accuracy bidirectional current sensing circuit is proposed.The proposed current sensing circuit inserts a resistor in the path of the current to be sensed,while the current mirror and biased current circuit are introduced.Therefore,the bidirectional current can be expressed by positive voltage.By theoretical analysis and simulation,the sampling theory is analyzed and four biased current circuits are compared.At last,experimental results verified the proposed method.It is demonstrated that the proposed current sensing circuit can achi...
上传时间: 2022-04-22
上传用户:
基于stm32的GPS基本数据处理+串口输入,32与GPS用串口通信并解析得到经纬度,通过另一个串口输入到电脑上。可以自己写个上位机解析经纬度得出具体位置。另外说下,OpenLuat 的所有 GNSS 模块均使用国际标准 (WGS-84)坐标系,所以开发者在国内常见地图定位时,会发现与实际情况有几十米的误差。这并非模块问题, 而是国内地图采用了非标坐标系所致。国内常见地图如高德地图使用 GCJ-02(俗称“火星坐标”。高德地图,腾讯地图,谷歌地图(中国区域)使用该坐标) 坐标系, 百度地图使用 BD-09 坐标系,故此开发者需要对模块输出的经纬度进行加偏处理,才能在国内的地图上实现精确定位。推荐一个网站,http://www.openluat.com/GPS-Offset.html。
上传时间: 2022-05-11
上传用户:
VHDL 基础程序百例 FPGA 逻辑设计源码VHDL语言100例第1例 带控制端口的加法器第2例 无控制端口的加法器第3例 乘法器第4例 比较器第5例 二路选择器第6例 寄存器第7例 移位寄存器第8例 综合单元库第9例 七值逻辑与基本数据类型第10例 函数第11例 七值逻辑线或分辨函数第12例 转换函数第13例 左移函数第14例 七值逻辑程序包第15例 四输入多路器第16例 目标选择器第17例 奇偶校验器第18例 映射单元库及其使用举第19例 循环边界常数化测试第20例 保护保留字第21例 进程死锁 第22例 振荡与死锁第23例 振荡电路第24例 分辨信号与分辨函数第25例 信号驱动源第26例 属性TRANSACTION和分辨信号第27例 块保护及属性EVENT,第28例 形式参数属性的测试第29例 进程和并发语句第30例 信号发送与接收第31例 中断处理优先机制建模第32例 过程限定第33例 整数比较器及其测试第34例 数据总线的读写第35例 基于总线的数据通道第36例 基于多路器的数据通道第37例 四值逻辑函数第38例 四值逻辑向量按位或运算第39例 生成语句描述规则结构第40例 带类属的译码器描述第41例 带类属的测试平台第42例 行为与结构的混合描述第43例 四位移位寄存器第44例 寄存/计数器第45例 顺序过程调用第46例 VHDL中generic缺省值的使用第47例 无输入元件的模拟第48例 测试激励向量的编写第49例 delta延迟例释第50例 惯性延迟分析第51例 传输延迟驱动优先第52例 多倍(次)分频器第53例 三位计数器与测试平台第54例 分秒计数显示器的行为描述6第55例 地址计数器第56例 指令预读计数器第57例 加.c减.c乘指令的译码和操作第58例 2-4译码器结构描述第59例 2-4译码器行为描述第60例 转换函数在元件例示中的应用第61例 基于同一基类型的两分辨类型的赋值相容问题第62例 最大公约数的计算第63例 最大公约数七段显示器编码第64例 交通灯控制器第65例 空调系统有限状态自动机第66例 FIR滤波器第67例 五阶椭圆滤波器第68例 闹钟系统的控制第69例 闹钟系统的译码第70例 闹钟系统的移位寄存器第71例 闹钟系统的闹钟寄存器和时间计数器第72例 闹钟系统的显示驱动器第73例 闹钟系统的分频器第74例 闹钟系统的整体组装第75例 存储器第76例 电机转速控制器第77例 神经元计算机第78例ccAm2901四位微处理器的ALU输入第79例ccAm2901四位微处理器的ALU第80例ccAm2901四位微处理器的RAM第81例ccAm2901四位微处理器的寄存器第82例ccAm2901四位微处理器的输出与移位第83例ccAm2910四位微程序控制器中的多路选择器第84例ccAm2910四位微程序控制器中的计数器/寄存器第85例ccAm2910四位微程序控制器的指令计数器第86例ccAm2910四位微程序控制器的堆栈第87例 Am2910四位微程序控制器的指令译码器第88例 可控制计数器第89例 四位超前进位加法器第90例 实现窗口搜索算法的并行系统(1)——协同处理器第91例 实现窗口搜索算法的并行系统(2)——序列存储器第92例 实现窗口搜索算法的并行系统(3)——字符串存储器第93例 实现窗口搜索算法的并行系统(4)——顶层控制器第94例 MB86901流水线行为描述组成框架第95例 MB86901寄存器文件管理的描述第96例 MB86901内ALU的行为描述第97例 移位指令的行为描述第98例 单周期指令的描述第99例 多周期指令的描述第100例 MB86901流水线行为模型
上传时间: 2022-05-14
上传用户:
网络是怎样连接的_户根勤---解压密码:666666目录浏览器生成消息 1——探索浏览器内部1.1 生成HTTP 请求消息51.1.1 探索之旅从输入网址开始 51.1.2 浏览器先要解析URL 71.1.3 省略文件名的情况 91.1.4 HTTP 的基本思路 101.1.5 生成HTTP 请求消息 141.1.6 发送请求后会收到响应 201.2 向DNS 服务器查询Web服务器的IP 地址241.2.1 IP 地址的基本知识 241.2.2 域名和IP 地址并用的理由 281.2.3 Socket库提供查询IP 地址的功能 301.2.4 通过解析器向DNS 服务器发出查询 311.2.5 解析器的内部原理 321.3 全世界DNS 服务器的大接力351.3.1 DNS 服务器的基本工作 351.3.2 域名的层次结构 381.3.3 寻找相应的DNS 服务器并获取IP 地址 401.3.4 通过缓存加快DNS 服务器的响应 441.4 委托协议栈发送消息451.4.1 数据收发操作概览 451.4.2 创建套接字阶段 481.4.3 连接阶段:把管道接上去 501.4.4 通信阶段:传递消息 521.4.5 断开阶段:收发数据结束 53COLUMN 网络术语其实很简单怪杰Resolver 55第章11920用电信号传输TCP/IP 数据 57——探索协议栈和网卡2.1创建套接字 612.1.1 协议栈的内部结构 612.1.2 套接字的实体就是通信控制信息 632.1.3 调用socket 时的操作 662.2 连接服务器682.2.1 连接是什么意思 682.2.2 负责保存控制信息的头部 702.2.3 连接操作的实际过程 732.3 收发数据752.3.1 将HTTP 请求消息交给协议栈 752.3.2 对较大的数据进行拆分 782.3.3 使用ACK 号确认网络包已收到 792.3.4 根据网络包平均往返时间调整ACK 号等待时间 832.3.5 使用窗口有效管理ACK 号 842.3.6 ACK 与窗口的合并 872.3.7 接收HTTP 响应消息 892.4 从服务器断开并删除套接字902.4.1 数据发送完毕后断开连接 902.4.2 删除套接字 922.4.3 数据收发操作小结 932.5 IP 与以太网的包收发操作952.5.1 包的基本知识 952.5.2 包收发操作概览 992.5.3 生成包含接收方IP 地址的IP 头部 1022.5.4 生成以太网用的MAC 头部 1062.5.5 通过ARP 查询目标路由器的MAC 地址 1082.5.6 以太网的基本知识 1112.5.7 将IP 包转换成电或光信号发送出去 1142.5.8 给网络包再加3 个控制数据 1162.5.9 向集线器发送网络包 1202.5.10 接收返回包 1232.5.11 将服务器的响应包从IP 传递给TCP 1252.6 UDP 协议的收发操作1282.6.1 不需要重发的数据用UDP 发送更高效 128第章22.6.2 控制用的短数据 1292.6.3 音频和视频数据 130COLUMN 网络术语其实很简单插进Socket 里的是灯泡还是程序 132从网线到网络设备 135——探索集线器、交换机和路由器3.1 信号在网线和集线器中传输1393.1.1 每个包都是独立传输的 1393.1.2 防止网线中的信号衰减很重要 1403.1.3 “双绞”是为了抑制噪声 1413.1.4 集线器将信号发往所有线路 1463.2 交换机的包转发操作1493.2.1 交换机根据地址表进行转发 1493.2.2 MAC 地址表的维护 1533.2.3 特殊操作 1543.2.4 全双工模式可以同时进行发送和接收 1553.2.5 自动协商:确定最优的传输速率 1563.2.6 交换机可同时执行多个转发操作 1593.3 路由器的包转发操作1593.3.1 路由器的基本知识 1593.3.2 路由表中的信息 1623.3.3 路由器的包接收操作 1663.3.4 查询路由表确定输出端口 1663.3.5 找不到匹配路由时选择默认路由 1683.3.6 包的有效期 1693.3.7 通过分片功能拆分大网络包 1703.3.8 路由器的发送操作和计算机相同 1723.3.9 路由器与交换机的关系 1733.4 路由器的附加功能1763.4.1 通过地址转换有效利用IP 地址 1763.4.2 地址转换的基本原理 1783.4.3 改写端口号的原因 1803.4.4 从互联网访问公司内网 1813.4.5 路由器的包过滤功能 182第章32122COLUMN 网络术语其实很简单集线器和路由器,换个名字身价翻倍? 184通过接入网进入互联网内部 187——探索接入网和网络运营商4.1 ADSL 接入网的结构和工作方式1914.1.1 互联网的基本结构和家庭、公司网络是相同的 1914.1.2 连接用户与互联网的接入网 1924.1.3 ADSL Modem 将包拆分成信元 1934.1.4 ADSL 将信元“调制”成信号 1974.1.5 ADSL 通过使用多个波来提高速率 2004.1.6 分离器的作用 2014.1.7 从用户到电话局 2034.1.8 噪声的干扰 2044.1.9 通过DSLAM 到达BAS 2054.2 光纤接入网(FTTH)2064.2.1 光纤的基本知识 2064.2.2 单模与多模 2084.2.3 通过光纤分路来降低成本 2134.3 接入网中使用的PPP 和隧道2174.3.1 用户认证和配置下发 2174.3.2 在以太网上传输PPP 消息 2194.3.3 通过隧道将网络包发送给运营商 2234.3.4 接入网的整体工作过程 2254.3.5 不分配IP 地址的无编号端口 2284.3.6 互联网接入路由器将私有地址转换成公有地址 2284.3.7 除PPPoE 之外的其他方式 2304.4 网络运营商的内部2334.4.1 POP 和NOC 2334.4.2 室外通信线路的连接 2364.5 跨越运营商的网络包2384.5.1 运营商之间的连接 2384.5.2 运营商之间的路由信息交换 2394.5.3 与公司网络中自动更新路由表机制的区别 2414.5.4 IX 的必要性 2424.5.5 运营商如何通过IX 互相连接 243第章4COLUMN 网络术语其实很简单名字叫服务器,其实是路由器 246服务器端的局域网中有什么玄机 2495.1 Web 服务器的部署地点2535.1.1 在公司里部署Web 服务器 2535.1.2 将Web 服务器部署在数据中心 2555.2 防火墙的结构和原理2565.2.1 主流的包过滤方式 2565.2.2 如何设置包过滤的规则 2565.2.3 通过端口号限定应用程序 2605.2.4 通过控制位判断连接方向 2605.2.5 从公司内网访问公开区域的规则 2625.2.6 从外部无法访问公司内网 2625.2.7 通过防火墙 2635.2.8 防火墙无法抵御的攻击 2645.3 通过将请求平均分配给多台服务器来平衡负载2655.3.1 性能不足时需要负载均衡 2655.3.2 使用负载均衡器分配访问 2665.4 使用缓存服务器分担负载2705.4.1 如何使用缓存服务器 2705.4.2 缓存服务器通过更新时间管理内容 2715.4.3 最原始的代理——正向代理 2765.4.4 正向代理的改良版——反向代理 2785.4.5 透明代理 2795.5 内容分发服务2805.5.1 利用内容分发服务分担负载 2805.5.2 如何找到最近的缓存服务器 2825.5.3 通过重定向服务器分配访问目标 2855.5.4 缓存的更新方法会影响性能 287COLUMN 网络术语其实很简单当通信线路变成局域网 291第章52324请求到达Web 服务器,响应返回浏览器 293——短短几秒的“漫长旅程”迎来终点6.1 服务器概览2976.1.1 客户端与服务器的区别 2976.1.2 服务器程序的结构 2976.1.3 服务器端的套接字和端口号 2996.2 服务器的接收操作3056.2.1 网卡将接收到的信号转换成数字信息 3056.2.2 IP 模块的接收操作 3086.2.3 TCP 模块如何处理连接包 3096.2.4 TCP 模块如何处理数据包 3116.2.5 TCP 模块的断开操作 3126.3 Web 服务器程序解释请求消息并作出响应3136.3.1 将请求的URI 转换为实际的文件名 3136.3.2 运行CGI 程序 3166.3.3 Web 服务器的访问控制 3196.3.4 返回响应消息 3236.4 浏览器接收响应消息并显示内容3236.4.1 通过响应的数据类型判断其中的内容 3236.4.2 浏览器显示网页内容!访问完成! 326COLUMN 网络术语其实很简单Gateway 是通往异世界的入口 328附录 330后记 334致谢 334作者简介 335
标签: 网络
上传时间: 2022-06-02
上传用户:fliang
其它原创视频第72讲 视频教程说明及实战书籍推荐.avi - 99.51MB第71讲 怎样加密PCB文件.avi - 17.65MB第70讲 怎样生成坐标文件.avi - 36.32MB第69讲 怎样利用gerber层检查视图.avi - 16.50MB第68讲 出光绘文件:三.avi - 75.70MB第67讲 出光绘文件:二.avi - 72.89MB第66讲 出光绘文件:一.avi - 52.13MB第65讲 调整位号丝印.avi - 71.91MB第64讲 删除死铜.avi - 17.68MB第63讲 怎样合并铜皮.avi - 40.67MB第62讲 Shape void操作演示.avi - 38.01MB第61讲 修改铜皮轮廓及提高铜皮优先级.avi - 51.99MB第60讲 Shape的层间复制及其换层.avi - 54.76MB
上传时间: 2022-06-05
上传用户:
数字密码锁是二十一世纪制锁业的一次革命。锁的特点是不用钥匙、无锁孔、机械传动、不易损坏、不磨损、不易被破译、可多次更换密码、换号不换锁、一把锁多个密码,具有防拨、防砸、防撬、防堵等功能。安装门锁时不破坏原门的结构,避免用钥匙开启旋芯式锁具的一切烦恼(如丢、落、拆、堵门被反锁等)。“数字密码锁”是利用数字密码来开启的锁具,其重复概率仅为十万分之一,有着很高的安全性;而旋芯式锁具使用不够安全。通过对社会各阶层千余人的调查,百分之百的人对目前身上挂着的串串钥匙无可奈何。但现在又没有一种锁具可摆脱钥匙的束缚。都愿意一身轻松没有任何顾虑的出入家门,都愿意用上一种既安全方便又不用钥匙的锁具。因此,“数字密码锁”产品的市场发展前景极为广阔。在调查的千余人中有60%的人有丢失钥匙的经历,25%的人有把钥匙反锁在室内的,75%的人居室在三层以上的,36%的人把钥匙忘在工厂的,有8%的人是利用邻居的阳台、窗户跳跃进入自己家来打开被反锁的房门,90%的人或听或看新闻得知有因无法打开房门,而冒险跃窗发生事故非死既伤,给家庭造成麻烦。精神和肉体的损伤是无法挽回的,为了解决上述各种数据给人们带来的各种烦恼,所以“数字密码锁”,使人们在无忧无虑的环境中生活。
上传时间: 2022-06-07
上传用户:
IP6816:集成 Qi 无线充接收功能的 TWS 耳机充电仓管理 SoCIP6816 是一款集成Qi 无线充接收、5V 升压转 换器、锂电池充电管理、电池电量指示的多功能电源管理 SoC,为无线充TWS 蓝牙耳机充电仓提供完 整的电源解决方案。IP6816 的高集成度与丰富功能,使其在应用时 仅需极少的外围器件,并有效减小整体方案的尺寸,降低BOM 成本。 IP6816 内置一个5V 输出、同步整流的升压DC-DC,功率管内置,提供最大300mA 输出电流, 升压效率高至93%。DC-DC 转换器开关频率在 1.5MHz,可以支持低成本电感和电容。IP6816 的线性充电提供最大 500mA 充电电流, 可灵活配置最大充电电流。内置 IC 温度和输入电压 智能调节充电电流功能。IP6816 可实现TWS 对耳独立入仓检测,检测到 耳机入仓后自动进入耳机充电模式,耳机充满后自 动进入休眠状态,静态电流最低可降至30uA。可灵 活定制耳机充满判饱电流,充满电流检测精度高达 1mA。IP6816 内置 MCU,可灵活定制4/3/2/1 颗 LED 电量显示。内置 10bit ADC,可准确计算电池电量。IP6816 采用QFN16 封装。 特性同步开关放电 充电 电量显示 低功耗 BOM 极简 深度定制 可灵活定制高性价比方案封装 QFN16(4*4*0.75)2 应用TWS 蓝牙耳机充电仓 锂电池便携设备
标签: 蓝牙耳机充电盒
上传时间: 2022-06-15
上传用户:
一,概述: IP5516一款集成升压转换器、锂电池充电管理、电池电量指示的多功能电源管理SOC,为TWS蓝牙耳机充电仓提供完整的电源解决方案。二,特性:1 同步开关放电: 300mA 同步升压转换 升压效率高达93% 内置电源路径管理,支持边充边放2 充电: 500mA 线性充电,充电电流可调 自动调节充电电流,匹配适配器输出能力 支持4.20V、4.30V、4.35V 和4.4V 电池3 电量显示: 内置10bit ADC 和精准库伦计算法 支持4/3/2/1 颗LED 电量显示4 低功耗: 智能识别耳机插入/充满/拔出,自动进待机 支持双路耳机独立检测 支持两种待机模式,待机功耗分别可达3uA 和25 μA5 BOM 极简: 功率MOS 内置,2.2uH 单电感实现放电6多重保护、高可靠性: 输出过流、过压、短路保护 输入过压、过充、过流保护 整机过温保护 ESD 4KV,VIN 瞬态耐压高达15V7深度定制: 可灵活低成本定制方案8封装:QFN16(4*4*0.75)三,应用TWS蓝牙耳机充电仓/充电仓
上传时间: 2022-06-15
上传用户: