基于FPGA的机器人视觉系统模块的设计 关键字: 机器人 视觉系统 集成电路 FPGA 一、概述 视觉技术是近几十年来发展的一门新兴技术。机器视觉可以代替人类的视觉从事检验、目标跟踪、机器人导向等方面的工作,特别是在那些需要重复、迅速的从图象中获取精确信息的场合。尽管在目前硬件和软件技术条件下,机器视觉功能还处于初级水平,但其潜在的应用价值引起了世界各国的高度重视,发达国家如美国、日本、德国、法国等都投入了大量的人力物力进行研究,近年来已经在机器视觉的某些方面获得了突破性的进展,机器视觉在车辆安全技术、自动化技术等应用中也越来越显示出其重要价值。本文根据最新的CMOS图像采集芯片设计了一种通用的视觉系统模块,经过编制不同的图像处理、模式识别算法程序本模块可以应用到足球机器人,无人车辆等各种场合。
标签: FPGA的机器人视觉系统
上传时间: 2015-04-25
上传用户:justgo123
1.河内之塔........................................................................................................................................ 4 2.Algorithm Gossip: 费式数列........................................................................................................ 5 3. 巴斯卡三角形.............................................................................................................................. 6 4.Algorithm Gossip: 三色棋............................................................................................................ 7 5.Algorithm Gossip: 老鼠走迷官(一)........................................................................................ 9 6.Algorithm Gossip: 老鼠走迷官(二)...................................................................................... 11 7.Algorithm Gossip: 骑士走棋盘.................................................................................................. 13 8.Algorithm Gossip: 八皇后.......................................................................................................... 16 9.Algorithm Gossip: 八枚银币...................................................................................................... 18 10.Algorithm Gossip: 生命游戏.................................................................................................... 20 11.Algorithm Gossip: 字串核对.................................................................................................... 23 12.Algorithm Gossip: 双色、三色河内塔.................................................................................... 25 13.Algorithm Gossip: 背包问题(Knapsack Problem)............................................................. 29 14.Algorithm Gossip: 蒙地卡罗法求PI...................................................................................... 34 15.Algorithm Gossip: Eratosthenes 筛选求质数............................................................................36 16.Algorithm Gossip: 超长整数运算(大数运算)....................................................................37 17.Algorithm Gossip: 长PI...........................................................................................................39 18.Algorithm Gossip: 最大公因数、最小公倍数、因式分解....................................................43 19.Algorithm Gossip: 完美数........................................................................................................ 46 20.Algorithm Gossip: 阿姆斯壮数................................................................................................ 49 21.Algorithm Gossip: 最大访客数................................................................................................ 50 22.Algorithm Gossip: 中序式转后序式(前序式)....................................................................52 23.Algorithm Gossip: 后序式的运算............................................................................................ 56 24.Algorithm Gossip: 洗扑克牌(乱数排列)............................................................................58 25.Algorithm Gossip: Craps 赌博游戏...........................................................................................60 26.Algorithm Gossip: 约瑟夫问题(Josephus Problem)...........................................................62 27.Algorithm
标签: C语言算法经典
上传时间: 2015-04-30
上传用户:cascas
第一节、samba是干什么的?它有什么用? Samba(SMB是其缩写) 是一个网络服务器,它是Linux作为本地服务器最重要的一个服务,用于Linux和Windows共享文件之用;Samba可以用于Windows和 Linux之间的共享文件,也一样用于Linux和Linux之间的共享文件;不过对于Linux和Linux之间共享文件有更好的网络文件系统 NFS,NFS也是需要架设服务器的; 2、安装及服务操作命令 安装samba程序非常简单,使用rpm -q samba查看当前系统是否已经安装了samba软件。 如果没有那就进入光盘,rpm -ivh *samba*.rpm即可。 仔细说下安装的包: samba-common-3.0.28-0.el5.8 //samba服务器和客户端中的最基本文件 samba-3.0.28-0.el5.8 //samba服务器核心软件包 system-config-samba-1.2.39-1.el5 //samba图形配置界面 samba-client-3.0.28-0.el5.8 //samba客户端软件 启动、暂停和停止服务: /etc/init.d/smb start /etc/init.d/smb stop /etc/init.d/smb restart 或 service smb start service smb stop service smb restart 第二节、由最简单的一个例子说起,匿名用户可读可写的实现 第一步: 更改smb.conf 我们来实现一个最简单的功能,让所有用户可以读写一个Samba 服务器共享的一个文件夹;我们要改动一下smb.conf ;首先您要备份一下smb.conf文件; [root@localhost ~]# cd /etc/samba [root@localhost samba]# cp smb.conf smb.conf.bak [root@localhost samba]# vi smb.conf 或geidt smb.conf & 然后我们把下面这段写入smb.conf中: [global] workgroup = WORKGROUP netbios name = Liukai server string = Liukai's Samba Server security = share [test] path = /opt/test writeable = yes browseable = yes guest ok = yes 注解: [global]这段是全局配置,是必段写的。其中有如下的几行; workgroup 就是Windows中显示的工作组;在这里我设置的是WORKGROUP (用大写); netbios name 就是在Windows中显示出来的计算机名; server string 就是Samba服务器说明,可以自己来定义;这个不是什么重要的; security 这是验证和登录方式,这里我们用了share ;验证方式有好多种,这是其中一种;另外一种常用的是user的验证方式;如果用share呢,就是不用设置用户和密码了; [test] 这个在Windows中显示出来是共享的目录; path = 可以设置要共享的目录放在哪里; writeable 是否可写,这里我设置为可写; browseable 是否可以浏览,可以;可以浏览意味着,我们在工作组下能看到共享文件夹。如果您不想显示出来,那就设置为 browseable=no,guest ok 匿名用户以guest身份是登录; 第二步:建立相应目录并授权 [root@localhost ~]# mkdir -p /opt/test [root@localhost ~]# id nobody uid=99(nobody) gid=99(nobody) groups=99(nobody) [root@localhost ~]# chown -R nobody:nobody /opt/test 注释:关于授权nobody,我们先用id命令查看了nobody用户的信息,发现他的用户组也是nobody,我们要以这个为准。有些系统nobody用户组并非是nobody ; 第三步:启动服务器 第四步:访问Samba 服务器的共享; 1、在Linux 中您可以用下面的命令来访问; [root@localhost ~]# smbclient -L //liukai或 smbclient //192.168.0.94/test Password: 注:直接按回车 2、在Windows中,您可以用下面的办法来访问; \\liukai 或 \\192.168.0.94 3、说明:如果用了netbiosname,就可以用“\\主机名”来访问,如果没用netbiosname,就不能用主机名访问。 第三节、简单的密码验证服务器 修改smb.conf文件: security = user guest account = liukai encrypt passwords = yes smb passwd file = /etc/samba/smbpasswd 然后,建立一个新用户 useradd liukai passwd liukai 成功后,cat /etc/passwd | mksmbpasswd.sh > /etc/samba/smbpasswd smbpasswd -a liukai 这就成功地添加了一个smb用户。 重启服务,使用这个用户进行登录即可。
上传时间: 2015-05-13
上传用户:yangkang1192
NFS服务器实现文件共享
上传时间: 2015-05-13
上传用户:yangkang1192
第1章 绪论 1 1.1 程序设计语言概述 1 1.1.1 机器语言 1 1.1.2 汇编语言 2 1.1.3 高级语言 2 1.1.4 C语言 3 1.2 C语言的优点和缺点 4 1.2.1 C语言的优点 4 1.2.2 C语言的缺点 6 1.3 算法概述 7 1.3.1 算法的基本特征 7 1.3.2 算法的复杂度 8 1.3.3 算法的准确性 10 1.3.4 算法的稳定性 14 第2章 复数运算 18 2.1 复数的四则运算 18 2.1.1 [算法1] 复数乘法 18 2.1.2 [算法2] 复数除法 20 2.1.3 【实例5】 复数的四则运算 22 2.2 复数的常用函数运算 23 2.2.1 [算法3] 复数的乘幂 23 2.2.2 [算法4] 复数的n次方根 25 2.2.3 [算法5] 复数指数 27 2.2.4 [算法6] 复数对数 29 2.2.5 [算法7] 复数正弦 30 2.2.6 [算法8] 复数余弦 32 2.2.7 【实例6】 复数的函数运算 34 第3章 多项式计算 37 3.1 多项式的表示方法 37 3.1.1 系数表示法 37 3.1.2 点表示法 38 3.1.3 [算法9] 系数表示转化为点表示 38 3.1.4 [算法10] 点表示转化为系数表示 42 3.1.5 【实例7】 系数表示法与点表示法的转化 46 3.2 多项式运算 47 3.2.1 [算法11] 复系数多项式相乘 47 3.2.2 [算法12] 实系数多项式相乘 50 3.2.3 [算法13] 复系数多项式相除 52 3.2.4 [算法14] 实系数多项式相除 54 3.2.5 【实例8】 复系数多项式的乘除法 56 3.2.6 【实例9】 实系数多项式的乘除法 57 3.3 多项式的求值 59 3.3.1 [算法15] 一元多项式求值 59 3.3.2 [算法16] 一元多项式多组求值 60 3.3.3 [算法17] 二元多项式求值 63 3.3.4 【实例10】 一元多项式求值 65 3.3.5 【实例11】 二元多项式求值 66 第4章 矩阵计算 68 4.1 矩阵相乘 68 4.1.1 [算法18] 实矩阵相乘 68 4.1.2 [算法19] 复矩阵相乘 70 4.1.3 【实例12】 实矩阵与复矩阵的乘法 72 4.2 矩阵的秩与行列式值 73 4.2.1 [算法20] 求矩阵的秩 73 4.2.2 [算法21] 求一般矩阵的行列式值 76 4.2.3 [算法22] 求对称正定矩阵的行列式值 80 4.2.4 【实例13】 求矩阵的秩和行列式值 82 4.3 矩阵求逆 84 4.3.1 [算法23] 求一般复矩阵的逆 84 4.3.2 [算法24] 求对称正定矩阵的逆 90 4.3.3 [算法25] 求托伯利兹矩阵逆的Trench方法 92 4.3.4 【实例14】 验证矩阵求逆算法 97 4.3.5 【实例15】 验证T矩阵求逆算法 99 4.4 矩阵分解与相似变换 102 4.4.1 [算法26] 实对称矩阵的LDL分解 102 4.4.2 [算法27] 对称正定实矩阵的Cholesky分解 104 4.4.3 [算法28] 一般实矩阵的全选主元LU分解 107 4.4.4 [算法29] 一般实矩阵的QR分解 112 4.4.5 [算法30] 对称实矩阵相似变换为对称三对角阵 116 4.4.6 [算法31] 一般实矩阵相似变换为上Hessen-Burg矩阵 121 4.4.7 【实例16】 对一般实矩阵进行QR分解 126 4.4.8 【实例17】 对称矩阵的相似变换 127 4.4.9 【实例18】 一般实矩阵相似变换 129 4.5 矩阵特征值的计算 130 4.5.1 [算法32] 求上Hessen-Burg矩阵全部特征值的QR方法 130 4.5.2 [算法33] 求对称三对角阵的全部特征值 137 4.5.3 [算法34] 求对称矩阵特征值的雅可比法 143 4.5.4 [算法35] 求对称矩阵特征值的雅可比过关法 147 4.5.5 【实例19】 求上Hessen-Burg矩阵特征值 151 4.5.6 【实例20】 分别用两种雅克比法求对称矩阵特征值 152 第5章 线性代数方程组的求解 154 5.1 高斯消去法 154 5.1.1 [算法36] 求解复系数方程组的全选主元高斯消去法 155 5.1.2 [算法37] 求解实系数方程组的全选主元高斯消去法 160 5.1.3 [算法38] 求解复系数方程组的全选主元高斯-约当消去法 163 5.1.4 [算法39] 求解实系数方程组的全选主元高斯-约当消去法 168 5.1.5 [算法40] 求解大型稀疏系数矩阵方程组的高斯-约当消去法 171 5.1.6 [算法41] 求解三对角线方程组的追赶法 174 5.1.7 [算法42] 求解带型方程组的方法 176 5.1.8 【实例21】 解线性实系数方程组 179 5.1.9 【实例22】 解线性复系数方程组 180 5.1.10 【实例23】 解三对角线方程组 182 5.2 矩阵分解法 184 5.2.1 [算法43] 求解对称方程组的LDL分解法 184 5.2.2 [算法44] 求解对称正定方程组的Cholesky分解法 186 5.2.3 [算法45] 求解线性最小二乘问题的QR分解法 188 5.2.4 【实例24】 求解对称正定方程组 191 5.2.5 【实例25】 求解线性最小二乘问题 192 5.3 迭代方法 193 5.3.1 [算法46] 病态方程组的求解 193 5.3.2 [算法47] 雅克比迭代法 197 5.3.3 [算法48] 高斯-塞德尔迭代法 200 5.3.4 [算法49] 超松弛方法 203 5.3.5 [算法50] 求解对称正定方程组的共轭梯度方法 205 5.3.6 [算法51] 求解托伯利兹方程组的列文逊方法 209 5.3.7 【实例26】 解病态方程组 214 5.3.8 【实例27】 用迭代法解方程组 215 5.3.9 【实例28】 求解托伯利兹方程组 217 第6章 非线性方程与方程组的求解 219 6.1 非线性方程求根的基本过程 219 6.1.1 确定非线性方程实根的初始近似值或根的所在区间 219 6.1.2 求非线性方程根的精确解 221 6.2 求非线性方程一个实根的方法 221 6.2.1 [算法52] 对分法 221 6.2.2 [算法53] 牛顿法 223 6.2.3 [算法54] 插值法 226 6.2.4 [算法55] 埃特金迭代法 229 6.2.5 【实例29】 用对分法求非线性方程组的实根 232 6.2.6 【实例30】 用牛顿法求非线性方程组的实根 233 6.2.7 【实例31】 用插值法求非线性方程组的实根 235 6.2.8 【实例32】 用埃特金迭代法求非线性方程组的实根 237 6.3 求实系数多项式方程全部根的方法 238 6.3.1 [算法56] QR方法 238 6.3.2 【实例33】 用QR方法求解多项式的全部根 240 6.4 求非线性方程组一组实根的方法 241 6.4.1 [算法57] 梯度法 241 6.4.2 [算法58] 拟牛顿法 244 6.4.3 【实例34】 用梯度法计算非线性方程组的一组实根 250 6.4.4 【实例35】 用拟牛顿法计算非线性方程组的一组实根 252 第7章 代数插值法 254 7.1 拉格朗日插值法 254 7.1.1 [算法59] 线性插值 255 7.1.2 [算法60] 二次抛物线插值 256 7.1.3 [算法61] 全区间插值 259 7.1.4 【实例36】 拉格朗日插值 262 7.2 埃尔米特插值 263 7.2.1 [算法62] 埃尔米特不等距插值 263 7.2.2 [算法63] 埃尔米特等距插值 267 7.2.3 【实例37】 埃尔米特插值法 270 7.3 埃特金逐步插值 271 7.3.1 [算法64] 埃特金不等距插值 272 7.3.2 [算法65] 埃特金等距插值 275 7.3.3 【实例38】 埃特金插值 278 7.4 光滑插值 279 7.4.1 [算法66] 光滑不等距插值 279 7.4.2 [算法67] 光滑等距插值 283 7.4.3 【实例39】 光滑插值 286 7.5 三次样条插值 287 7.5.1 [算法68] 第一类边界条件的三次样条函数插值 287 7.5.2 [算法69] 第二类边界条件的三次样条函数插值 292 7.5.3 [算法70] 第三类边界条件的三次样条函数插值 296 7.5.4 【实例40】 样条插值法 301 7.6 连分式插值 303 7.6.1 [算法71] 连分式插值 304 7.6.2 【实例41】 验证连分式插值的函数 308 第8章 数值积分法 309 8.1 变步长求积法 310 8.1.1 [算法72] 变步长梯形求积法 310 8.1.2 [算法73] 自适应梯形求积法 313 8.1.3 [算法74] 变步长辛卜生求积法 316 8.1.4 [算法75] 变步长辛卜生二重积分方法 318 8.1.5 [算法76] 龙贝格积分 322 8.1.6 【实例42】 变步长积分法进行一重积分 325 8.1.7 【实例43】 变步长辛卜生积分法进行二重积分 326 8.2 高斯求积法 328 8.2.1 [算法77] 勒让德-高斯求积法 328 8.2.2 [算法78] 切比雪夫求积法 331 8.2.3 [算法79] 拉盖尔-高斯求积法 334 8.2.4 [算法80] 埃尔米特-高斯求积法 336 8.2.5 [算法81] 自适应高斯求积方法 337 8.2.6 【实例44】 有限区间高斯求积法 342 8.2.7 【实例45】 半无限区间内高斯求积法 343 8.2.8 【实例46】 无限区间内高斯求积法 345 8.3 连分式法 346 8.3.1 [算法82] 计算一重积分的连分式方法 346 8.3.2 [算法83] 计算二重积分的连分式方法 350 8.3.3 【实例47】 连分式法进行一重积分 354 8.3.4 【实例48】 连分式法进行二重积分 355 8.4 蒙特卡洛法 356 8.4.1 [算法84] 蒙特卡洛法进行一重积分 356 8.4.2 [算法85] 蒙特卡洛法进行二重积分 358 8.4.3 【实例49】 一重积分的蒙特卡洛法 360 8.4.4 【实例50】 二重积分的蒙特卡洛法 361 第9章 常微分方程(组)初值问题的求解 363 9.1 欧拉方法 364 9.1.1 [算法86] 定步长欧拉方法 364 9.1.2 [算法87] 变步长欧拉方法 366 9.1.3 [算法88] 改进的欧拉方法 370 9.1.4 【实例51】 欧拉方法求常微分方程数值解 372 9.2 龙格-库塔方法 376 9.2.1 [算法89] 定步长龙格-库塔方法 376 9.2.2 [算法90] 变步长龙格-库塔方法 379 9.2.3 [算法91] 变步长基尔方法 383 9.2.4 【实例52】 龙格-库塔方法求常微分方程的初值问题 386 9.3 线性多步法 390 9.3.1 [算法92] 阿当姆斯预报校正法 390 9.3.2 [算法93] 哈明方法 394 9.3.3 [算法94] 全区间积分的双边法 399 9.3.4 【实例53】 线性多步法求常微分方程组初值问题 401 第10章 拟合与逼近 405 10.1 一元多项式拟合 405 10.1.1 [算法95] 最小二乘拟合 405 10.1.2 [算法96] 最佳一致逼近的里米兹方法 412 10.1.3 【实例54】 一元多项式拟合 417 10.2 矩形区域曲面拟合 419 10.2.1 [算法97] 矩形区域最小二乘曲面拟合 419 10.2.2 【实例55】 二元多项式拟合 428 第11章 特殊函数 430 11.1 连分式级数和指数积分 430 11.1.1 [算法98] 连分式级数求值 430 11.1.2 [算法99] 指数积分 433 11.1.3 【实例56】 连分式级数求值 436 11.1.4 【实例57】 指数积分求值 438 11.2 伽马函数 439 11.2.1 [算法100] 伽马函数 439 11.2.2 [算法101] 贝塔函数 441 11.2.3 [算法102] 阶乘 442 11.2.4 【实例58】 伽马函数和贝塔函数求值 443 11.2.5 【实例59】 阶乘求值 444 11.3 不完全伽马函数 445 11.3.1 [算法103] 不完全伽马函数 445 11.3.2 [算法104] 误差函数 448 11.3.3 [算法105] 卡方分布函数 450 11.3.4 【实例60】 不完全伽马函数求值 451 11.3.5 【实例61】 误差函数求值 452 11.3.6 【实例62】 卡方分布函数求值 453 11.4 不完全贝塔函数 454 11.4.1 [算法106] 不完全贝塔函数 454 11.4.2 [算法107] 学生分布函数 457 11.4.3 [算法108] 累积二项式分布函数 458 11.4.4 【实例63】 不完全贝塔函数求值 459 11.5 贝塞尔函数 461 11.5.1 [算法109] 第一类整数阶贝塞尔函数 461 11.5.2 [算法110] 第二类整数阶贝塞尔函数 466 11.5.3 [算法111] 变型第一类整数阶贝塞尔函数 469 11.5.4 [算法112] 变型第二类整数阶贝塞尔函数 473 11.5.5 【实例64】 贝塞尔函数求值 476 11.5.6 【实例65】 变型贝塞尔函数求值 477 11.6 Carlson椭圆积分 479 11.6.1 [算法113] 第一类椭圆积分 479 11.6.2 [算法114] 第一类椭圆积分的退化形式 481 11.6.3 [算法115] 第二类椭圆积分 483 11.6.4 [算法116] 第三类椭圆积分 486 11.6.5 【实例66】 第一类勒让德椭圆函数积分求值 490 11.6.6 【实例67】 第二类勒让德椭圆函数积分求值 492 第12章 极值问题 494 12.1 一维极值求解方法 494 12.1.1 [算法117] 确定极小值点所在的区间 494 12.1.2 [算法118] 一维黄金分割搜索 499 12.1.3 [算法119] 一维Brent方法 502 12.1.4 [算法120] 使用一阶导数的Brent方法 506 12.1.5 【实例68】 使用黄金分割搜索法求极值 511 12.1.6 【实例69】 使用Brent法求极值 513 12.1.7 【实例70】 使用带导数的Brent法求极值 515 12.2 多元函数求极值 517 12.2.1 [算法121] 不需要导数的一维搜索 517 12.2.2 [算法122] 需要导数的一维搜索 519 12.2.3 [算法123] Powell方法 522 12.2.4 [算法124] 共轭梯度法 525 12.2.5 [算法125] 准牛顿法 531 12.2.6 【实例71】 验证不使用导数的一维搜索 536 12.2.7 【实例72】 用Powell算法求极值 537 12.2.8 【实例73】 用共轭梯度法求极值 539 12.2.9 【实例74】 用准牛顿法求极值 540 12.3 单纯形法 542 12.3.1 [算法126] 求无约束条件下n维极值的单纯形法 542 12.3.2 [算法127] 求有约束条件下n维极值的单纯形法 548 12.3.3 [算法128] 解线性规划问题的单纯形法 556 12.3.4 【实例75】 用单纯形法求无约束条件下N维的极值 568 12.3.5 【实例76】 用单纯形法求有约束条件下N维的极值 569 12.3.6 【实例77】 求解线性规划问题 571 第13章 随机数产生与统计描述 574 13.1 均匀分布随机序列 574 13.1.1 [算法129] 产生0到1之间均匀分布的一个随机数 574 13.1.2 [算法130] 产生0到1之间均匀分布的随机数序列 576 13.1.3 [算法131] 产生任意区间内均匀分布的一个随机整数 577 13.1.4 [算法132] 产生任意区间内均匀分布的随机整数序列 578 13.1.5 【实例78】 产生0到1之间均匀分布的随机数序列 580 13.1.6 【实例79】 产生任意区间内均匀分布的随机整数序列 581 13.2 正态分布随机序列 582 13.2.1 [算法133] 产生任意均值与方差的正态分布的一个随机数 582 13.2.2 [算法134] 产生任意均值与方差的正态分布的随机数序列 585 13.2.3 【实例80】 产生任意均值与方差的正态分布的一个随机数 587 13.2.4 【实例81】 产生任意均值与方差的正态分布的随机数序列 588 13.3 统计描述 589 13.3.1 [算法135] 分布的矩 589 13.3.2 [算法136] 方差相同时的t分布检验 591 13.3.3 [算法137] 方差不同时的t分布检验 594 13.3.4 [算法138] 方差的F检验 596 13.3.5 [算法139] 卡方检验 599 13.3.6 【实例82】 计算随机样本的矩 601 13.3.7 【实例83】 t分布检验 602 13.3.8 【实例84】 F分布检验 605 13.3.9 【实例85】 检验卡方检验的算法 607 第14章 查找 609 14.1 基本查找 609 14.1.1 [算法140] 有序数组的二分查找 609 14.1.2 [算法141] 无序数组同时查找最大和最小的元素 611 14.1.3 [算法142] 无序数组查找第M小的元素 613 14.1.4 【实例86】 基本查找 615 14.2 结构体和磁盘文件的查找 617 14.2.1 [算法143] 无序结构体数组的顺序查找 617 14.2.2 [算法144] 磁盘文件中记录的顺序查找 618 14.2.3 【实例87】 结构体数组和文件中的查找 619 14.3 哈希查找 622 14.3.1 [算法145] 字符串哈希函数 622 14.3.2 [算法146] 哈希函数 626 14.3.3 [算法147] 向哈希表中插入元素 628 14.3.4 [算法148] 在哈希表中查找元素 629 14.3.5 [算法149] 在哈希表中删除元素 631 14.3.6 【实例88】 构造哈希表并进行查找 632 第15章 排序 636 15.1 插入排序 636 15.1.1 [算法150] 直接插入排序 636 15.1.2 [算法151] 希尔排序 637 15.1.3 【实例89】 插入排序 639 15.2 交换排序 641 15.2.1 [算法152] 气泡排序 641 15.2.2 [算法153] 快速排序 642 15.2.3 【实例90】 交换排序 644 15.3 选择排序 646 15.3.1 [算法154] 直接选择排序 646 15.3.2 [算法155] 堆排序 647 15.3.3 【实例91】 选择排序 650 15.4 线性时间排序 651 15.4.1 [算法156] 计数排序 651 15.4.2 [算法157] 基数排序 653 15.4.3 【实例92】 线性时间排序 656 15.5 归并排序 657 15.5.1 [算法158] 二路归并排序 658 15.5.2 【实例93】 二路归并排序 660 第16章 数学变换与滤波 662 16.1 快速傅里叶变换 662 16.1.1 [算法159] 复数据快速傅里叶变换 662 16.1.2 [算法160] 复数据快速傅里叶逆变换 666 16.1.3 [算法161] 实数据快速傅里叶变换 669 16.1.4 【实例94】 验证傅里叶变换的函数 671 16.2 其他常用变换 674 16.2.1 [算法162] 快速沃尔什变换 674 16.2.2 [算法163] 快速哈达玛变换 678 16.2.3 [算法164] 快速余弦变换 682 16.2.4 【实例95】 验证沃尔什变换和哈达玛的函数 684 16.2.5 【实例96】 验证离散余弦变换的函数 687 16.3 平滑和滤波 688 16.3.1 [算法165] 五点三次平滑 689 16.3.2 [算法166] α-β-γ滤波 690 16.3.3 【实例97】 验证五点三次平滑 692 16.3.4 【实例98】 验证α-β-γ滤波算法 693
标签: C 算法 附件 源代码
上传时间: 2015-06-29
上传用户:cbsdukaf
Use the fast Fourier transform function fft to analyse following signal. Plot the original signal, and the magnitude of its spectrum linearly and logarithmically. Apply Hamming window to reduce the leakage. . The hamming window can be coded in Matlab as for n=1:N hamming(n)=0.54+0.46*cos((2*n-N+1)*pi/N); end; where N is the data length in the FFT.
标签: matlab fft
上传时间: 2015-11-23
上传用户:石灰岩123
Use fft to analyse signal by plotting the original signal and its spectrum.
标签: matlab fft
上传时间: 2015-11-23
上传用户:石灰岩123
一、地址映射与数据传输 二、PCI9054的基本知识 三、PCI9054的寄存器之间的关系
标签: PCI 总线学习笔记
上传时间: 2016-02-15
上传用户:4722656
实验十 子程序结构设计实验
上传时间: 2016-05-11
上传用户:txzdll
摘要:本文在无线信道的理论基础上,分析了Suzuki信道模型的结构原理,介绍了利用正弦波叠加法构成高斯序列,从而建立Suzuki信道数学模型的方法,并通过Matlab软件对其进行了仿真。仿真结果验证了Suzuki模型同时符合大尺度衰落和小尺度衰落的特点,且可以验证Suzuki信道模型能够仿真平坦衰落信道
上传时间: 2016-05-15
上传用户:嘻嘻嘻嘻