1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本被置为0,以突出牌照区域。 4.削弱背景干扰。对图像B做简单的相邻像素灰度值相减,得到新的图像G,即Gi,j=|Pi,j-Pi,j-1|i=0,1,…,439 j=0,1,…,639Gi,0=Pi,0,左边缘直接赋值,不会影响整体效果。 5.用自定义模板进行中值滤波 区域灰度基本被赋值为0。考虑到文字是由许多短竖线组成,而背景噪声有一大部分是孤立噪声,用模板(1,1,1,1,1)T对G进行中值滤波,能够得到除掉了大部分干扰的图像C。 6.牌照搜索:利用水平投影法检测车牌水平位置,利用垂直投影法检测车牌垂直位置。 7.区域裁剪,截取车牌图像。
上传时间: 2014-01-08
上传用户:songrui
1.大型稀疏线性方程组的求解 A*X=b 。 2. 一维数组冒泡法排序算法 4.矩阵求逆 5. 改进的牛顿算法——弦割法
上传时间: 2015-10-29
上传用户:asddsd
一、 一元三次回归方程 CubicMultinomialRegress.cs 方程模型为Y=a*X(3)+b*X(2)+c*X(1)+d public override double[] buildFormula() 得到系数数组,存放顺序与模型系数相反,即该数组中系数的值依次是d,c,b,a。 以后所述所有模型的系数存放均与此相同(多元线性回归方程除外)。 public override double forecast(double x) 预测函数,根据模型得到预测结果 public override double computeR2() 计算相关系数(决定系数),系数越接近1,数据越满足该模型。
标签: CubicMultinomialRegress override public double
上传时间: 2015-11-25
上传用户:13215175592
function Binary_Search(L,a,b,x) begin if a>b then return(-1) else begin m:=(a+b) div 2 if x=L[m] then return(m) else if x>L[m] then
标签: begin Binary_Search function return
上传时间: 2015-12-17
上传用户:tb_6877751
第一章 有关数论的算法 1.1最大公约数与最小公倍数 1.2有关素数的算法 1.3方程ax+by=c的整数解及应用 1.4 求a^b mod n 第二章 高精度计算 2.1高精度加法 2.2高精度减法 2.3高精度乘法 2.4 高精度除法 练习 第三章 排列与组合 3.1加法原理与乘法原理 练习 3. 2 排列与组合的概念与计算公式 练习 3.3排列与组合的产生算法 练习 第四章 计算几何 4.1 基础知识 4.2 线段的相交判断 4.3寻找凸包算法 练习 第五章 其它数学知识及算法 5.1 鸽巢原理 5.2 容斥原理及应用 5.3 常见递推关系及应用
上传时间: 2016-01-05
上传用户:frank1234
梯形公式计算面积近似值:In=Tn=h/2(f(a)+f(b)) 变长梯形面积:T2n=Tn/2+h/2∑f(Xk+h/2) 辛普生面积:I2n=(4T2n-Tn)/3
上传时间: 2016-01-06
上传用户:qw12
% SSOR预处理的共轭梯度法求解方程Ax=b % 输入参数说明 % A 正定矩阵[n*n] % b 右边向量 % omega SSOR预处理参数(0--2) % Times 迭代次数 % errtol 给定误差终止条件 % %输出参数 % NewX 方程Ax=b的x近似解 % avgerr 求解的当前平均绝对误差
上传时间: 2013-12-19
上传用户:一诺88
学生学籍管理系统(B/S)的设计与开发主要实现以下功能1.学生基本信息的管理; 2、学生增减; 3、课程管理:课程的增加、修改、删除、查询等; 4、基础数据管理.
上传时间: 2013-12-23
上传用户:二驱蚊器
小信号放大器的设计 1. 放大器是射频/微波系统的必不可少的部件。 2. 放大器有低噪声、小信号、高增益、中功率、大功率等。 3. 放大器按工作点分有A、AB、B、C、D…等类型。 4. 放大器指标有:频率范围、动态范围、增益、噪声系数、工作效率、1dB压缩点、三阶交调等。
上传时间: 2016-02-10
上传用户:ggwz258
Floyd-Warshall算法描述 1)适用范围: a)APSP(All Pairs Shortest Paths) b)稠密图效果最佳 c)边权可正可负 2)算法描述: a)初始化:dis[u,v]=w[u,v] b)For k:=1 to n For i:=1 to n For j:=1 to n If dis[i,j]>dis[i,k]+dis[k,j] Then Dis[I,j]:=dis[I,k]+dis[k,j] c)算法结束:dis即为所有点对的最短路径矩阵 3)算法小结:此算法简单有效,由于三重循环结构紧凑,对于稠密图,效率要高于执行|V|次Dijkstra算法。时间复杂度O(n^3)。 考虑下列变形:如(I,j)∈E则dis[I,j]初始为1,else初始为0,这样的Floyd算法最后的最短路径矩阵即成为一个判断I,j是否有通路的矩阵。更简单的,我们可以把dis设成boolean类型,则每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”来代替算法描述中的蓝色部分,可以更直观地得到I,j的连通情况。
标签: Floyd-Warshall Shortest Pairs Paths
上传时间: 2013-12-01
上传用户:dyctj