通信电路,主要为高频电路,发射电路、接受电路、高频放大、功率放大等电路。
标签: 通信电路
上传时间: 2013-06-14
上传用户:zsjinju
蓝牙(Bluetooth)技术是近年来国外先进国家研究发展最快的短程无线通信技术之一,能够广泛地应用于工业短距离无线控制装置、近距离移动无线控制设备、机器人控制、办公自动化及多媒体娱乐设备等局部范围内无线数据传输的领域中。在我国,由于对蓝牙技术的研究还处于研究开发的初级阶段, 还没有形成蓝牙数据短距离无线通信的一套开放性应用标准。 在无线音频传输领域内,传统的基于模拟调制方式的无线音频传输由于抗干扰能力较差,传输的音频质量会受到较大的影响,而国内市场上的蓝牙音频产品仅支持单声道语音传输。所以,对基于蓝牙技术的高品质多通道音频传输技术的研究将具有一定的技术创新性,在无线音频传输领域也具有较为广阔的市场前景。 本文以嵌入式蓝牙技术与音频信号传输系统为研究开发课题,参考国外蓝牙技术协议标准,利用功能模块单元与嵌入式技术,目标是研制一种基于嵌入式开发应用的高品质双声道蓝牙无线音频传输系统。本系统通过对双声道线性模拟音源的数字化MP3编解码处理,结合基于嵌入式应用的简化后的HCI层蓝牙应用协议,实现了蓝牙信道带宽内的高品质双声道音频信号点对点的传输。 在硬件设计上,系统采用了模块化设计思想。发送端和接收端由音频处理模块、控制传输模块和无线模块三部分构成。其中,音频处理模块以MAS3587音频处理芯片为核心,负责音频信号的AD采样、MP3压缩和解压缩以及DA还原等工作;控制传输模块以MSP430F169为核心,负责MP3数据帧的高速传输以及蓝牙接口协议控制;无线模块采用蓝牙单芯片解决方案(集成蓝牙射频、基带和链路管理等),负责MP3数据帧的射频发送和接收。模块与模块之间采用工业标准接口方式连接。音频处理模块和控制传输模块之间采用DMA方式的通用并口(PIO);控制传输模块与蓝牙模块之间采用DMA方式的通用异步串口(UART)。 在软件设计上,系统主要由蓝牙协议解释、传输控制和芯片驱动三部分构成。在蓝牙协议解释上,系统采用了基于HCI层的ACL数据包透明传输方式;在传输控制上,采用了基于通用并口(PIO)和异步串口(UART)的DMA方式高效率批量数据传输技术;芯片驱动主要指对MAS3587的基本配置。 对目标系统的测试实验采用了目前流行的音频测试虚拟仪器软件Adobe Audition 1.5。实验项目包括扫频测试、音乐测试、听觉测试、距离测试以及抗干扰测试等。实验结果表明,输入音源在经过MP3编码、发射、接收及MP3解码后,音频质量基本上没受影响,实际双声道音质接近于CD音质,而无线传输的可靠性远高于模拟无线音频传输,几乎没有断音与错音,充分体现了嵌入式蓝牙无线技术的优势。
上传时间: 2013-05-27
上传用户:稀世之宝039
PCB 布线原则连线精简原则连线要精简,尽可能短,尽量少拐弯,力求线条简单明了,特别是在高频回路中,当然为了达到阻抗匹配而需要进行特殊延长的线就例外了,例如蛇行走线等。安全载流原则铜线的宽度应以自己所能承载的电流为基础进行设计,铜线的载流能力取决于以下因素:线宽、线厚(铜铂厚度)、允许温升等,下表给出了铜导线的宽度和导线面积以及导电电流的关系(军品标准),可以根据这个基本的关系对导线宽度进行适当的考虑。印制导线最大允许工作电流(导线厚50um,允许温升10℃)导线宽度(Mil) 导线电流(A) 其中:K 为修正系数,一般覆铜线在内层时取0.024,在外层时取0.048;T 为最大温升,单位为℃;A 为覆铜线的截面积,单位为mil(不是mm,注意);I 为允许的最大电流,单位是A。电磁抗干扰原则电磁抗干扰原则涉及的知识点比较多,例如铜膜线的拐弯处应为圆角或斜角(因为高频时直角或者尖角的拐弯会影响电气性能)双面板两面的导线应互相垂直、斜交或者弯曲走线,尽量避免平行走线,减小寄生耦合等。一、 通常一个电子系统中有各种不同的地线,如数字地、逻辑地、系统地、机壳地等,地线的设计原则如下:1、 正确的单点和多点接地在低频电路中,信号的工作频率小于1MHZ,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而应采用一点接地。当信号工作频率大于10MHZ 时,如果采用一点接地,其地线的长度不应超过波长的1/20,否则应采用多点接地法。2、 数字地与模拟地分开若线路板上既有逻辑电路又有线性电路,应尽量使它们分开。一般数字电路的抗干扰能力比较强,例如TTL 电路的噪声容限为0.4~0.6V,CMOS 电路的噪声容限为电源电压的0.3~0.45 倍,而模拟电路只要有很小的噪声就足以使其工作不正常,所以这两类电路应该分开布局布线。3、 接地线应尽量加粗若接地线用很细的线条,则接地电位会随电流的变化而变化,使抗噪性能降低。因此应将地线加粗,使它能通过三倍于印制板上的允许电流。如有可能,接地线应在2~3mm 以上。4、 接地线构成闭环路只由数字电路组成的印制板,其接地电路布成环路大多能提高抗噪声能力。因为环形地线可以减小接地电阻,从而减小接地电位差。二、 配置退藕电容PCB 设计的常规做法之一是在印刷板的各个关键部位配置适当的退藕电容,退藕电容的一般配置原则是:?电电源的输入端跨½10~100uf的的电解电容器,如果印制电路板的位置允许,采Ó100uf以以上的电解电容器抗干扰效果会更好¡���?原原则上每个集成电路芯片都应布置一¸0.01uf~`0.1uf的的瓷片电容,如遇印制板空隙不够,可Ã4~8个个芯片布置一¸1~10uf的的钽电容(最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感,最好使用钽电容或聚碳酸酝电容)。���?对对于抗噪能力弱、关断时电源变化大的器件,ÈRA、¡ROM存存储器件,应在芯片的电源线和地线之间直接接入退藕电容¡���?电电容引线不能太长,尤其是高频旁路电容不能有引线¡三¡过过孔设¼在高ËPCB设设计中,看似简单的过孔也往往会给电路的设计带来很大的负面效应,为了减小过孔的寄生效应带来的不利影响,在设计中可以尽量做到£���?从从成本和信号质量两方面来考虑,选择合理尺寸的过孔大小。例如¶6- 10层层的内存模¿PCB设设计来说,选Ó10/20mi((钻¿焊焊盘)的过孔较好,对于一些高密度的小尺寸的板子,也可以尝试使Ó8/18Mil的的过孔。在目前技术条件下,很难使用更小尺寸的过孔了(当孔的深度超过钻孔直径µ6倍倍时,就无法保证孔壁能均匀镀铜);对于电源或地线的过孔则可以考虑使用较大尺寸,以减小阻抗¡���?使使用较薄µPCB板板有利于减小过孔的两种寄生参数¡���? PCB板板上的信号走线尽量不换层,即尽量不要使用不必要的过孔¡���?电电源和地的管脚要就近打过孔,过孔和管脚之间的引线越短越好¡���?在在信号换层的过孔附近放置一些接地的过孔,以便为信号提供最近的回路。甚至可以ÔPCB板板上大量放置一些多余的接地过孔¡四¡降降低噪声与电磁干扰的一些经Ñ?能能用低速芯片就不用高速的,高速芯片用在关键地方¡?可可用串一个电阻的方法,降低控制电路上下沿跳变速率¡?尽尽量为继电器等提供某种形式的阻尼,ÈRC设设置电流阻尼¡?使使用满足系统要求的最低频率时钟¡?时时钟应尽量靠近到用该时钟的器件,石英晶体振荡器的外壳要接地¡?用用地线将时钟区圈起来,时钟线尽量短¡?石石英晶体下面以及对噪声敏感的器件下面不要走线¡?时时钟、总线、片选信号要远ÀI/O线线和接插件¡?时时钟线垂直ÓI/O线线比平行ÓI/O线线干扰小¡? I/O驱驱动电路尽量靠½PCB板板边,让其尽快离¿PC。。对进ÈPCB的的信号要加滤波,从高噪声区来的信号也要加滤波,同时用串终端电阻的办法,减小信号反射¡? MCU无无用端要接高,或接地,或定义成输出端,集成电路上该接电源、地的端都要接,不要悬空¡?闲闲置不用的门电路输入端不要悬空,闲置不用的运放正输入端接地,负输入端接输出端¡?印印制板尽量使Ó45折折线而不Ó90折折线布线,以减小高频信号对外的发射与耦合¡?印印制板按频率和电流开关特性分区,噪声元件与非噪声元件呀距离再远一些¡?单单面板和双面板用单点接电源和单点接地、电源线、地线尽量粗¡?模模拟电压输入线、参考电压端要尽量远离数字电路信号线,特别是时钟¡?对¶A/D类类器件,数字部分与模拟部分不要交叉¡?元元件引脚尽量短,去藕电容引脚尽量短¡?关关键的线要尽量粗,并在两边加上保护地,高速线要短要直¡?对对噪声敏感的线不要与大电流,高速开关线并行¡?弱弱信号电路,低频电路周围不要形成电流环路¡?任任何信号都不要形成环路,如不可避免,让环路区尽量小¡?每每个集成电路有一个去藕电容。每个电解电容边上都要加一个小的高频旁路电容¡?用用大容量的钽电容或聚酷电容而不用电解电容做电路充放电储能电容,使用管状电容时,外壳要接地¡?对对干扰十分敏感的信号线要设置包地,可以有效地抑制串扰¡?信信号在印刷板上传输,其延迟时间不应大于所有器件的标称延迟时间¡环境效应原Ô要注意所应用的环境,例如在一个振动或者其他容易使板子变形的环境中采用过细的铜膜导线很容易起皮拉断等¡安全工作原Ô要保证安全工作,例如要保证两线最小间距要承受所加电压峰值,高压线应圆滑,不得有尖锐的倒角,否则容易造成板路击穿等。组装方便、规范原则走线设计要考虑组装是否方便,例如印制板上有大面积地线和电源线区时(面积超¹500平平方毫米),应局部开窗口以方便腐蚀等。此外还要考虑组装规范设计,例如元件的焊接点用焊盘来表示,这些焊盘(包括过孔)均会自动不上阻焊油,但是如用填充块当表贴焊盘或用线段当金手指插头,而又不做特别处理,(在阻焊层画出无阻焊油的区域),阻焊油将掩盖这些焊盘和金手指,容易造成误解性错误£SMD器器件的引脚与大面积覆铜连接时,要进行热隔离处理,一般是做一¸Track到到铜箔,以防止受热不均造成的应力集Ö而导致虚焊£PCB上上如果有¦12或或方Ð12mm以以上的过孔时,必须做一个孔盖,以防止焊锡流出等。经济原则遵循该原则要求设计者要对加工,组装的工艺有足够的认识和了解,例È5mil的的线做腐蚀要±8mil难难,所以价格要高,过孔越小越贵等热效应原则在印制板设计时可考虑用以下几种方法:均匀分布热负载、给零件装散热器,局部或全局强迫风冷。从有利于散热的角度出发,印制板最好是直立安装,板与板的距离一般不应小Ó2c,,而且器件在印制板上的排列方式应遵循一定的规则£同一印制板上的器件应尽可能按其发热量大小及散热程度分区排列,发热量小或耐热性差的器件(如小信号晶体管、小规模集³电路、电解电容等)放在冷却气流的最上(入口处),发热量大或耐热性好的器件(如功率晶体管、大规模集成电路等)放在冷却Æ流最下。在水平方向上,大功率器件尽量靠近印刷板的边沿布置,以便缩短传热路径;在垂直方向上,大功率器件尽量靠近印刷板上方布置£以便减少这些器件在工作时对其他器件温度的影响。对温度比较敏感的器件最好安置在温度最低的区域(如设备的µ部),千万不要将它放在发热器件的正上方,多个器件最好是在水平面上交错布局¡设备内印制板的散热主要依靠空气流动,所以在设计时要研究空气流动的路径,合理配置器件或印制电路板。采用合理的器件排列方式,可以有效地降低印制电路的温升。此外通过降额使用,做等温处理等方法也是热设计中经常使用的手段¡
上传时间: 2013-11-24
上传用户:气温达上千万的
随着高频微波在日常生活上的广泛应用,例如行动电话、无线个人计算机、无线网络等,高频电路的技术也日新月异。良好的高频电路设计的实现与改善,则建立在于精确的组件模型的基础上。被动组件如电感、滤波器等的电路模型与电路制作的材料、制程有紧密的关系,而建立这些组件等效电路模型的方法称为参数萃取。 早期的电感制作以金属绕线为主要的材料与技术,而近年来,由于高频与高速电路的应用日益广泛,加上电路设计趋向轻薄短小,电感制作的材质与技术也不断的进步。例如射频机体电路(RFIC)运用硅材质,微波集成电路则广泛的运用砷化镓(GaAs)技术;此外,在低成本的无线通讯射频应用上,如混合(Hybrid)集成电路则运用有机多芯片模块(MCMs)结合传统的玻璃基板制程,以及低温共烧陶瓷(LTCC)技术,制作印刷式平面电感等,以提升组件的质量与效能,并减少体积与成本。 本章的重点包涵探讨电感的原理与专有名词,以及以常见的电感结构,并分析影响电感效能的主要因素与其电路模型,最后将以电感的模拟设计为例,说明电感参数的萃取。
上传时间: 2013-11-20
上传用户:yuanxiaoqiang
单片机应用技术选编(11) 目录 第一章 专题论述 1.1 3种嵌入式操作系统的分析与比较(2) 1.2 KEIL RTX51 TINY内核的分析与应用(8) 1.3 中间件技术及其发展展望(13) 1.4 嵌入式实时操作系统μC/OSⅡ的移植探讨(19) 1.5 μC/OSⅡ的移植及其应用系统开发(23) 1.6 片上系统的总线结构发展现状及前景(27) 1.7 SoC——VLSI的新发展(30) 1.8 电力线通信(PLC)技术的发展(35) 1.9 8位低档单片机与以太网的互联(40) 1.10 单片机系统的电磁兼容性设计(43) 1.11 条码技术的发展及其应用(48) 第二章 综合应用 2.1 串行扩展应用平台设计(54) 2.2 单片机对CF存储卡文件读/写的实现(60) 2.3 基于8051的CF卡文件系统的实现(65) 2.4 利用DS1302时钟芯片实现时间锁的方法(71) 2.5 无线校时解决无电缆协调控制中的时钟精度问题(76) 2.6 单片机从机的波特率自适应设置(80) 2.7 汉字的动态编码与显示方案(84) 2.8 PS/2协议的研究及其在单片机系统中的应用(89) 2.9 PC机标准鼠标及键盘的远距离遥控(94) 2.10 PC标准键盘在单片机系统中的应用(99) 2.11 ADC误差对系统性能影响的分析与研究(104) 2.12 ADμC812单片机A/D转换及软件校准方法(109) 2.13 智能卡中射频前端的设计(114) 2.14 固态继电器选型要素(118) 第三章 软件技术 3.1 单片机C语言中指针的应用(122) 3.2 用Keil C51开发大型嵌入式程序(127) 3.3 C语言高效编程的几招(135) 3.4 ASM51调用Franklin C51函数的实现(139) 3.5 51系列汇编程序设计的优化(142) 3.6 常用串行总线数据操作的C51编程(144) 3.7 嵌入式操作系统μC/OSⅡ的内核实现(150) 3.8 μC/OSⅡ在MCS51系列中的应用(154) 3.9 基于MCS51单片机的实时内核的设计与实现(158) 3.10 时间片轮转算法在单片机程序设计中的应用(165) 3.11 如何编制高效的键译程序(169) 3.12 DSP编程的几个关键问题(172) 3.13 DSP软件编程经验浅谈(177) 3.14 TMS320C6000汇编和C语言的混合编程(183) 3.15 TMS320C28xDSP创建C可调用的汇编程序的简便方法(188) 3.16 TMS320C6000 DSP自动引导的方法和编程实现(193) 3.17 DSP外挂FLASH的在系统编程及并行引导装载方法的研究(198) 3.18 基于并口的I2C总线模拟软件包开发及应用(203) 第四章 网络与通信 4.1 用51单片机控制RTL8019AS实现以太网通信(210) 4.2 测试网络中长线传输若干问题分析(215) 4.3 基于手机模块TC35的单片机短消息收发系统(219) 4.4 GSM网络在远程抄表中的应用(223) 4.5 基于键盘接口的单片机与PC的无线数据通信(228) 4.6 基于TRF4900的无线发射电路设计与应用(234) 4.7 电力线载波通信方案设计(240) 4.8 消费总线电力线接口电路的设计(246) 4.9 LC带通滤波器在低压电力线载波通信中的应用(252) 4.10 基于P300芯片组的电力线载波通信模件开发(257) 4.11 PL2101电力线载波芯片I2C通信的实现(264) 4.12 电力线Modem在音频传输系统中的应用(269) 4.13 SSC技术及P485在电力线通信中的应用(274) 4.14 低压电力线载波通信中的抗干扰问题(279) 4.15 RS232口与RS485口转换的免供电与免控制实现(284) 4.16 利用并口实现PC机应用程序与I2C总线间的通信(287) 第五章 总线技术 5.1 一线总线的软件接口(292) 5.2 提高1Wire总线器件驱动能力的方法(296) 5.3 1Wire Bus指令卡的应用(299) 5.4 模拟I2C总线多主通信的通用软件包(303) 5.5 USB OnTheGo技术概述(306) 5.6 USB总线信号环境分析(312) 5.7 USB电路保护技术和实施方案(318) 5.8 可移植的USB协议栈实现原理与技术研究(324) 5.9 一种USB外设的实现方案(329) 5.10 基于PDIUSBD12芯片的USB接口设计(334) 5.11 无线USB的设计与实现(339) 5.12 RS232/USB转换器的设计(343) 5.13 CAN总线冗余方法研究(348) 5.14 CAN总线中循环冗余校验码的原理及其电路实现(352) 5.15 CAN总线位定时参数的确定(356) 5.16 基于P80C592的DeviceNet通信节点接口的设计(363) 5.17 MBUS总线及其应用(367) 第六章 可靠性及安全性 6.1 印制电路板的可靠性设计(374) 6.2 正确选择和安装EMI滤波器(380) 6.3 电磁兼容与电子产品(386) 6.4 电磁兼容性衬垫安装结构设计及应用(390) 6.5 高速电路PCB板中电磁干扰的研究(395) 6.6电磁屏蔽抗干扰技术的探讨(398) 6.7 ESD破坏的特点及对策(403) 6.8 屏蔽抗干扰技术在检测系统中的应用研究(408) 6.9 蓝牙技术中抗干扰能力的分析(413) 6.10 光电编码器信号抗干扰算法(416) 6.11 集成电路的噪声抑制(420) 6.12 智能硬件电路加密方法(425) 6.13 一种新型电子安全密码锁的设计(428) 6.14 光电耦合器的实用技巧(433) 第七章 PLD与SoC设计 7.1 SoC与芯片设计方法(438) 7.2 SoC片上总线综述(443) 7.3 SoC片上总线技术的研究(450) 7.4 SoC体系结构中AMBA总线的系统级设计(454) 7.5 MCS51兼容芯片的正向设计(461) 7.6 一种低功耗8位MCU的设计与实现(467) 7.7 ASIC设计中基于Verilog语言的Inout(双向)端口程序设计(472) 7.8 硬件描述语言HDL的现状与发展(480) 7.9 FPGA设计中关键问题的研究(486) 7.10 浮点加法器的VHDL算法设计(493) 7.11 基于CPLD的系统中I2C总线的设计(498) 7.12 基于CPLD的条形码译码电路设计(503) 7.13 I2C总线数据传输系统的设计及其应用(508) 第八章 典型应用技术 8.1 CYGNAL高速片上系统单片机C8051F交叉开关的使用(516) 8.2 基于FT245BM的简易USB接口开发(520) 8.3 CY7C63001的PS/2USB键盘转换设备设计(525) 8.4 用AT89C52单片机实现RS422到CAN总线的转换(529) 8.5 基于通信器S1503的门禁系统的设计(534) 8.6 用PMM8713和SI7300A构成的一种步进电机功率驱动电路(540) 8.7 基于DS1616的定时数据采集系统(545) 8.8 用AT89C2051实现电话远程控制家用电器(548) 8.9 基于S6700芯片与ISO/IEC15693标准的读卡器设计(551) 8.10 用单总线DS2450实现红外式触摸屏的设计方法(556) 8.11 电阻式触摸屏在智能仪表中的应用(560) 8.12 PDA触摸屏控制芯片TSC2200及其应用(565) 8.13 高性能铁电存储器FM24C256及其在单片机中的应用(570) 8.14 DTMF拨号与条形码阅读器的接口设计(576) 第九章 文章摘要 一、 专题论述(582) 1.1 移动存储技术及其发展(582) 1.2 Java技术在嵌入式系统中的应用(582) 1.3 用Java实现基于向量空间的搜索引擎优化(582) 1.4 利用TINI和Java设计远程测控系统(582) 1.5 无线技术综述(582) 1.6 蓝牙技术及其现状与发展浅析(582) 1.7 蓝牙及系统实现技术(583) 1.8 蓝牙技术在音频网关中的应用(583) 1.9 现场总线技术及标准化现状(583) 1.10 iButton的工作原理及其特点(583) 1.11 单总线技术及其应用(583) 1.12 MBUS二级制总线(583) 1.13 基于电力线数字家庭实现方案(583) 1.14 嵌入式系统的组成、设计与调试(584) 1.15 基于软件的智能传感器的概念与实现(584) 1.16 入侵检测系统的历史、现状与研究进展(584) 1.17 嵌入式应用系统的实质——兼论应用系统软件的开发方法(584) 1.18 硬件演化理论与应用技术研究(584) 1.19 一种纠错编码器的实现(584) 1.20 UML在嵌入式系统设计中的应用(585) 1.21 嵌入式系统的系统测试和可靠性评估(585) 1.22 单片机应用系统中的低功耗设计(585) 1.23 开关电源新技术与发展前景(585) 1.24 单片机系统中汉字字库的设计与实现(585) 1.25 嵌入式系统中的CACHE问题(585) 1.26 基于先验预知的动态电源管理技术(585) 1.27 一种MCU时钟系统的设计(586) 1.28 定时用户的时间获取技术(586) 1.29 基于Windows平台的高精度定时的实现(586) 1.30 微秒级定时技术的实现与改进(586) 1.31 电力系统GPS同步时钟应用技术(586) 1.32 基于单片机的GPS授时系统设计(586) 1.33 大容量串行Flash的快速编程(587) 1.34铁电存储器在单片机系统中的应用(587) 1.35 提高闪速存储器写入速度的方法(587) 1.36 提高单片机A/D转换速度的方法(587) 1.37 新型流水线型模/数转换器的接口技术(587) 1.38 超高速A/D转换器的原理及其应用(587) 1.39 32位ARM嵌入式处理器的调试技术(587) 1.40 JNI技术在数据采集中的应用(588) 1.41 测控系统中的通信技术的应用(588) 1.42 适用于仪器仪表通信的若干新技术(588) 1.43 微机系统通用遥控输入模块(588) 1.44 嵌入式系统和基于Windows CE的在线监测设备(588) 1.45标准非接触式IC卡在智能化仪表中的应用(588) 1.46 数字视频信号的长线传输(589) 1.47 基于单片机的MicroDridve接口设计(589) 1.48 接近开关原理及其应用(589) 1.49 嵌入不敷出式器件的测试技术研究(589) 1.50 楼宇自动化元件及其应用(589) 1.51 高速密码卡的设计与实现(589) 1.52 无线温度采集系统的设计(589) 1.53 一种基于双CPU的无线通信数据采集系统设计(590) 1.54 单片机嵌入式系统在远程电网监测系统中的应用(590) 1.55 微控制器拨号上网的实现(590) 1.56 远程监控技术在信息家电领域的研究与应用(590) 1.57 在远程数据采集中多线程串口通信的应用(590) 1.58 高分辨率D/A转换器及其在系统辨识中的应用(590) 1.59 计算机增强型并行口与数据采集系统设计(590) 1.60 ∑Δ型ADC转换速度的分析(591) 1.61 基于DAGs模型的RAID系统的设计与实现(591) 1.62 一种新颖的模拟信号光电隔离方法(591) 1.63 CIP51及其在嵌入式单片机系统的应用(591) 1.64 线性电位器产生非线性传递函数分析(591) 1.65 MPC555微控制器与汽车电子(591) 1.66 嵌入式设备鼠标接口的设计与实现(592) 1.67 曼彻斯特码异步解调的单片机实现及性能分析(592) 1.68 基于智能卡的数字签名系统的设计与实现(592) 1.69 构建S3C4510B嵌入式系统的开发应用平台(592) 1.70 电压基准(592) 1.71 单片开关电源的原理与应用(592) 二、 综合应用(593) 2.1 JTAG口及其对Flash的在线编程(593) 2.2 AVR嵌入式单片机接口技术与应用(593) 2.3 基于51系列单片机的串行口扩展技术(593) 2.4 异步高速双口RAM多串口接口电路设计(593) 2.5 单片机PC机串行数据通信的工程实践(593) 2.6 8051高速单片机串行通信的时钟新配置(593) 2.7 一种用于单片机的红外串行通信接口(594) 2.8 串行DataFlash存储器及其与单片机的接口(594) 2.9 一种低成本高性能的LED数码显示器(594) 2.10 一种新型的LED屏获取显示数据方法(594) 2.11 一种经济实用显示驱动电路的设计(594) 2.12 PIC单片机与基于HD44780液晶显示模块接口的设计(594) 2.13 单片机与软盘驱动器的接口(594) 2.14 基于PIC单片机的视频矩阵开关的设计(595) 2.15 嵌入式GSM短信息接口的软、硬件设计(595) 2.16 将AT89C52用作多功能外围器件使用(595) 2.17 基于8位微控制器控制硬盘进行HDTV码流读/写(595) 2.18 一种新型电涡流位置传感器(595) 2.19 编码传感器接口装置设计及应用(595) 2.20 数字式温湿度传感器SHT15及其应用(596) 2.21 温度传感器的简化μC接口(596) 2.22 全串行单片机系统在光纤气敏传感器中的应用(596) 2.23 基于混沌电路设计阵列触觉传感器的采集系统(596) 2.24 光学传感器阵列在测定水硬度中的应用(596) 2.25 智能仪表的一种数据交换技术(596) 2.26 用过采样和求均值技术提高模/数转换器的分辨率(597) 2.27 数字频率计分频电路的设计(597) 2.28 一种远程数据采集模块的设计(597) 2.29 单片精密仪器仪表放大器应用电路(597) 2.30 12位高速ADC存储电路设计与实现(597) 2.31 EPP模式500 Ksps数据采集接口(597) 2.32 精密时间间隔测量方法的改进(598) 2.33 精密信号测量系统的设计(598) 2.34 多通道高速数据采集记录系统(598) 2.35 新型精密石英晶体温度仪(598) 2.36 GPS多天线数据采集与控制系统(598) 2.37 DMA方式的A/D转换器接口电路设计(598) 2.38 多通道可编程A/D转换芯片在现场总线智能从站开发中的应用(599) 2.39 温控型非易失性数字电位器DS1847(8)智能接口的设计与其在测量中的应用(599) 2.40 高性能18位D/A转换器设计(599) 2.41 由单片机控制的单相SPWM变频器的研究(599) 2.42 基于单片机的智能步进电机细分驱动器设计(599) 2.43 一种高精度智能温控装置的研究(599) 2.44 光电耦合器用于数字开关电源(600) 2.45 酒店中非接触式IC卡系统的应用设计(600) 2.46 89C51单片微机在自动定位系统中的应用(600) 2.47 PCI通用板卡结构(600) 2.48 多种串行接口技术在LED大屏幕显示系统中的应用(600) 2.49 嵌入式系统中使用USB盘存储(600) 2.50 一种简单串行鼠标控制的单片机实现(601) 2.51 便携式MP3播放器的设计(601) 2.52 基于IDE硬盘的大容量语音记录仪(601) 2.53 数字存储式自动应答录音系统(601) 2.54 RS编译码的一种硬件解决方案(601) 2.55 SDRAM在任意波形发生器中的应用(601) 2.56 无线控制授时技术(RCT)及其应用(601) 2.57 低功耗IC卡门锁系统设计(602) 2.58 IC卡读写器用的一种四元振子天线分析(602) 2.59 一种基于单片机控制的数字视频混合器(602) 2.60 车载GPS接收机与PC机的串口通信及数据截取(602) 2.61 基于keil c51的红外遥控器解码设计(602) 2.62 基于DTMF的解码器设计(602) 2.63短消息电话中数据链路层的控制技术(602) 2.64 宽带CDMA发射机低相噪本振源的设计(603) 2.65 智能型多芯片数码语音录放电路(603) 三、 软件技术(604) 3.1 实时多任务嵌入系统的实现(604) 3.2 4种实时操作系统实时性的分析对比(604) 3.3 应用于嵌入式系统开发的Java技术(604) 3.4 嵌入式软件测试研究(604) 3.5 浅谈组态软件发展趋势(604) 3.6 8051单片机开发工具DIY(604) 3.7 如何仿真单片机的外围设备(605) 3.8 基于ARM的嵌入式系统程序开发要点(605) 3.9 基于MSP430单片机的实时多任务操作系统(605) 3.10 在单片AT89C52上实现多任务实时处理(605) 3.11 单片机系统中的多任务、多线程机制的实现(605) 3.12 嵌入式实时操作系统移植技术的分析与应用(606) 3.13 一种新的基于单片机的多字节浮点快速开平方算法(606) 3.14 单片机与PC机串行通信时浮点数的处理(606) 3.15 AVR90三字节浮点库及其使用说明(606) 3.16 嵌入式系统软件开发中的通信协议研究(606) 3.17 PIC单片机软件异步串行口实现技巧(606) 3.18 用汇编语言实现GPS时间、日期转换(606) 3.19 实时任务处理程序设计中“易变的”变量(607) 3.20 VB与C51之间浮点类型数据的传输和转换(607) 3.21 用汇编语言实现BCH解码校验算法(607) 3.22 嵌入式RTOS中就绪任务查找算法和优先级反转的解决方案(607) 3.23 AVR单片机软件模拟UART通信接口(607) 3.24 基于EJB2.0的MessageDrivenBean组件设计与实现(607) 3.25 基于AT89C51的通信协议转换系统(607) 3.26 USB密码钥及其软件设计(608) 3.27 任意长度信息序列的CRC快速算法(608) 3.28 设备驱动程序通知应用程序的几种方法(608) 3.29 基于嵌入式系统的改进快速压缩算法(608) 3.30 点缝焊控制系统人机接口设计及C51编程(608) 3.31 8K智能卡DTT4C08及其应用程序设计(609) 3.32 利用数码相机SDK开发图像采集应用程序(609) 3.33 Windows 2000下设备驱动程序的设计(609) 3.34 Windows CE下通用串行总线驱动程序开发(609) 3.35 基于Windows CE的嵌入式网络监控系统的设计与实现(609) 3.36 基于Windows CE的嵌入式焊接质量在线监测设备的研究(609) 3.37 在Windows CE下实现串口通信(610) 3.38 Windows 2000/98下USB驱动程序的开发(610) 3.39 VxWorks下PC/104CAN驱动器程序设计(610) 3.40 嵌入式操作系统μC/OSⅡ的特点及应用(610) 3.41 嵌入式实时操作系统μC/OS定时器服务的改进(610) 3.42 μC/OSⅡ在AT89C51上的移植(610) 3.43 μC/OSⅡ在C8051F020中的移植(611) 3.44 实时操作系统μC/OSⅡ在196KC上的移植(611) 3.45 μC/OSⅡ在AT91X40单片机上的移植(611) 3.46 实时嵌入式操作系统μC/OSⅡ在MPC555上的移植(611) 3.47 μC/OSⅡ实时嵌入式系统在电机保护装置中的开发(611) 3.48 基于μC/OSⅡ的网络控制系统通信接口设计(611) 3.49 嵌入式Linux技术研究(612) 3.50 嵌入式Linux硬实时性的研究与实现(612) 3.51 Linux实时机制分析与改进(612) 3.52 Linux中PCI设备驱动程序的开发(612) 3.53 嵌入式Linux集成开发环境的设计与实现(612) 3.54 嵌入式Linux系统及其应用研究(612) 3.55 Linux在保护模式下的中断处理分析(612) 3.56 Linux系统下USB设备驱动程序的开发(613) 3.57 嵌入式Linux中断设备驱动程序设计(613) 3.58 Linux下汉字输入实现技术(613) 3.59 SPI串行总线在嵌入式Linux系统中的编程实现(613) 3.60 红外通信在嵌入式Linux系统中的实现(613) 3.61 基于LinuxJava的新一代智能电话软件平台的研究(613) 3.62 实时Linux下数控系统多任务的结构与实现(614) 3.63 嵌入式Linux在数控系统中的应用(614) 3.64 TMS320C6X DSP的C语言与汇编混合编程技术(614) 3.65 单片机C语言编程应注意的若干问题(614) 四、 网络与通信(615) 4.1 工业控制网络中的以太网技术(615) 4.2 工业以太网协议EtherNet/IP(615) 4.3 基于SX52微控制器的嵌入式系统以太网接口设计与实现(615) 4.4 嵌入式以太网技术及其在工业测控领域中的应用(615) 4.5 基于CSoC芯片的嵌入式以太网接口设计(615) 4.6 基于Internet的测试网时间同步问题的研究(616) 4.7 提升实时测量数据在Internet上的传输可靠性(616) 4.8 TCP/IP协议中嵌入硬件设备的驱动程序设计实现(616) 4.9 TCP/IP协议的安全性分析及对策(616) 4.10 基于工业以太网的嵌入式控制器的研究(616) 4.11 基于Web的嵌入式系统设计与实现(616) 4.12 CAN总线与以太网互连系统设计(617) 4.13 SX52嵌入式Internet网关设计及实现(617) 4.14 利用单片机控制以太网网卡进行数据传输的研究(617) 4.15 一种双MCU结构的嵌入式Internet接入服务器(617) 4.16 嵌入了TCP/IP协议的单片机数据通信系统的设计与实现(617) 4.17 异步串行接口与以太网服务器的连接(617) 4.18 基于TCP/IP的楼宇自控网BACnet(618) 4.19 基于SX52BD单片机的以太网控制应用(618) 4.20 网络处理器IP2022及其在嵌入式牌照识别系统中的应用(618) 4.21 蓝牙与控制系统通讯技术研究(618) 4.22 蓝牙基带数据传输机理分析(618) 4.23 Jini与蓝牙技术的结合应用(618) 4.24 蓝牙技术软件实现模式分析(618) 4.25 蓝牙个人区域网(PAN)的设计与实现(619) 4.26 蓝牙技术安全性分析与安全策略(619) 4.27 蓝牙技术在测控系统中的应用研究(619) 4.28 蓝牙无线测控系统的实现(619) 4.29 基于蓝牙技术实现家域网的设计(619) 4.30 基于蓝牙技术的无线智能传感器网络的实现(619) 4.31 蓝牙技术在车辆导航系统中的应用研究(620) 4.32 蓝牙技术在机械手控制系统中的应用(620) 4.33 蓝牙HCI接口及其在工控和智能仪器仪表中的应用(620) 4.34 蓝牙芯片ROK 101 007在蓝牙语音系统中的应用(620) 4.35 基于蓝牙技术家庭网络的研究和实现(620) 4.36 基于蓝牙技术的移动远程教育系统实现方案(620) 4.37 蓝牙技术及其在遥控器中的应用(621) 4.38 无线局域网安全机制研究(621) 4.39 无线局域网技术及其未来应用(621) 4.40 蓝牙无线通讯技术在AGV的应用(621) 4.41 突发解调器STEL9257在宽带无线接入系统中的应用(621) 4.42 无线因特网上的数据传输(621) 4.43 单片射频收发芯片nRF403在医院监护系统中的应用(622) 4.44 射频收发芯片nRF401在语音传输中的应用(622) 4.45 PBA313 01蓝牙射频芯片特性与应用(622) 4.46 基于点对点无线通信技术的nRF401芯片的应用研究(622) 4.47 基于CDMA的无线DCS系统(622) 4.48 基于GSM短信息的离散油井监控系统(622) 4.49 基于GSM技术的无线环保监测仪的研制(622) 4.50 GSM模块在车辆监控系统无线通信中的应用(623) 4.51 基于GSM的变电所遥测遥控系统(623) 4.52 基于GSM传输方式的电管所现代管理系统(623) 4.53 基于GSM短消息业务的预装式变电站综合保护装置(623) 4.54 基于GPRS无线传输的便携式图像监控系统(623) 4.55 RF8000 GPS接收器的原理及应用(623) 4.56 无线家庭网络控制系统的设计(624) 4.57 智能家庭网络性能分析(624) 4.58 基于CEBus的家庭网关研究与开发(624) 4.59 一种基于无线通讯与公用电话网的智能抄表系统(624) 4.60 电力线载波通讯模块在机器人控制技术中的应用(624) 4.61 温控系统VB实现的PC机与单片机串行通讯(624) 4.62 用定时中断方式实现单片机与PC机之间的串行通信(624) 4.63 PC机与多台单片机并行通信接口的设计(625) 4.64 PC并口EPP通信外围电路设计(625) 4.65 在VC++6.0中用内嵌汇编语言实现PC机与单片机的串行通信(625) 4.66 VB6.0实现与 ADμC824串行通信(625) 4.67 VC下利用串口进行数据通讯的研究(625) 4.68 长距离通信器S1503的应用编程原理(625) 4.69 利用MODEM芯片实现单片机远程通讯(626) 五、 新器件与新技术(627) 5.1 Cygnal在片系统单片机的特点与应用(627) 5.2 C8051F02X外部存储器接口和I/O端口配置(627) 5.3 C8051F单片机电压基准的不同用法(627) 5.4 C8051F236在精密定位控制系统中的应用(627) 5.5 C8051F041在智能功率柜中的应用(627) 5.6 基于ADμC812的测控平台软硬件设计(627) 5.7 ADμC812单片机A/D转换介绍及软件校准方法(627) 5.8 利用ADμC812实现高频的数字测量(628) 5.9 ADμC812微控制器在供热系统的应用(628) 5.10 采用ADμC824的数字调节器(628) 5.11 ADμC812单片机温度控制器(628) 5.12 用ADμC812开发高精度多功能的动物呼吸机(628) 5.13 P89C51RD2中的WatchDog用法(628) 5.14 W78E516B在系统可编程的应用(628) 5.15 一种新型单片机MSC1210及其应用(629) 5.16 M16C/62单片机在仪器仪表中的应用(629) 5.17 24位A/D转换的51单片机MSC1210及其应用(629) 5.18 基于AT90单片机的数据采集系统(629) 5.19 基于80C196KC的PSD934F2远程程序升级技术(629) 5.20 基于80C196单片机的空间矢量控制简洁算法实现(629) 5.21 80C196ADMC401双CPU接口电路设计及其应用(629) 5.22 基于196KC的步进电机检测系统的设计(630) 5.23 8097BH系统与80C196系统的替换(630) 5.24 基于MSP430的一维光纤滑觉传感器(630) 5.25 基于MSP430的扩展Flash Memory系统(630) 5.26 MSP430串行写入BOOTSTRAP与加密熔断功能(630) 5.27 基于MSP430的极低功耗系统设计(630) 5.28 MSP430的低功耗特性在蓝牙产品中的应用(631) 5.29 新型16位单片机SPCE061A及应用展望(631) 5.30 基于凌阳单片机的语音信号实时采集(631) 5.31 基于PIC16F877的温室自动控制系统(631) 5.32 PIC16C78系列混合信号嵌入式芯片的原理和应用(631) 5.33 基于PIC16C54单片机的智能软件狗设计(631) 5.34 用PIC单片机控制DDS芯片AD9852实现雷达跳频系统(631) 5.35 “龙珠”微处理器电源管理设计在GPS接收机中的应用(632) 5.36 ARM7TDMI内核微处理器的调试原理及方法(632) 5.37 32位ARM核微处理器芯片PUC3030A及其应用(632) 5.38 基于W77E58双串口通信的监控系统(632) 5.39 用N87C196MH构成的交流电动机变频器(632) 5.40 基于MB90F549单片机的频率测量仪(632) 5.41 基于MB90F549单片机的数据自动记录仪(633) 5.42 基于MB90F549单片机的直流伺服电机调速系统(633) 5.43 Fujitsu F2MC16LX系列单片机的特点及应用(633) 5.44 MB90F540/545单片机的接口技术(633) 5.45 用ATmega8单片机设计串行编程器(633) 5.46 一种基于μPD780208的低功耗数据处理系统(633) 5.47 基于Z85C30的多协议串行通信设计(633) 5.48 嵌入式处理器MPC8250与CF卡的接口设计(634) 5.49 电流型PWM控制芯片PUCC3801的原理及应用(634) 5.50 带A/D和LCD驱动器的51兼容单片机控制家电(634) 5.51 内含标准字库的中文液晶模块OCMJ5X10(634) 5.52 ispPAC10芯片及其应用(634) 5.53 PSoC的动态配置能力及其实现方法(634) 5.54 在系统可编程模拟器件ispPAC20及其应用(634) 5.55 超大容量Flash Memory的应用与开发(635) 5.56 超大容量E2PROM存储器TH58100及其应用(635) 5.57 Super Flash型存储器SST39SF020的特性及应用(635) 5.58 闪速存储器AT29C040与单片机的接口设计(635) 5.59 铁电存储器FM24C16原理及其在多MCU系统中的应用(635) 5.60 16 Kbits非易失性铁电存储器芯片FM25C160原理及其应用(635) 5.61 PLX9054对SRAM读/写及DMA操作(635) 5.62 DS1302数据暂存器的灵活应用(636) 5.63 DS18B20串行通信误码的解决办法(636) 5.64 DS1820数字温度传感器在轮胎温度信号采集中的应用(636) 5.65 单片机与串行时钟DS1307的接口设计(636) 5.66 用实时时钟芯片DS1305启动数据采集系统(636) 5.67 实时时钟芯片RX8025的原理及其应用(636) 5.68 X25043的原理及在单片机系统中的应用(637) 5.69 X25045在智能仪表系统中的应用设计(637) 5.70 EG7564RS点阵液晶的开发应用(637) 5.71 串行显示管理芯片PS7219在智能仪表系统中的应用设计(637) 5.72 AD7711与单片机AT89S8252的接口技术(637) 5.73 AD7715模/数转换器在小信号测量中的应用(637) 5.74 带信号调理的16位A/D转换器AD7715的原理及应用(637) 5.75 高精度A/D转换器AD7730及其应用(638) 5.76 高精度模数芯片组AD1555与AD1556应用(638) 5.77 18位串行低功耗A/D转换器MAX1402(638) 5.78 智能温度传感器DS18B20的原理与应用(638) 5.79 提高DS1631温度传感器精度的方法(638) 5.80 数字温度测控芯片DS1620的应用(638) 5.81 单片K型热电偶放大与数字转换器MAX6675(639) 5.82 一种采用专用芯片TCA355涡流传感器的研制(639) 5.83 数字加速度传感器ADXL210在轨检仪中的应用(639) 5.84 ADXL202加速度计在振动测试中的应用(639) 5.85 PSD9xxF在在线编程中的应用(639) 5.86 单片机与LM629芯片相结合的全数字位置直流伺服系统(639) 5.87 步进电机驱动芯片HH204原理及应用(640) 5.88 PCI9052接口电路功能及使用(640) 5.89 LN82530串行通讯控制器的研制(640) 5.90 通用异步收发芯片SCC2691的原理及应用(640) 5.91 UART多串口扩展器SP2338DP及其应用(640) 5.92 基于nRF401的双绞线故障诊断(640) 5.93 单片机集成调频发射芯片MC2831A的应用(640) 5.94 基于MCX314控制器的数控机床运动控制系统(641) 5.95 DS80C400在远程数据采集系统中的应用(641) 5.96 TLC5618在测控系统中的应用(641) 5.97 SDH净荷提取/定位处理芯片PM5313及其应用(641) 5.98 DAC714在单片机系统中的层叠应用(641) 5.99 基于PIC单片机和μPD6453的新型视频字符叠加系统(641) 5.100 电压电流电量测量芯片CS5460及其应用(641) 5.101 二维条码PDF417译码技术(642) 5.102 基于SAA6752的MPEG2编码系统(642) 5.103 ISD4004语音芯片在语音报站器中的应用(642) 5.104 可编程正弦波发生器芯片ML2035的原理及应用(642) 六、 总线技术(643) 6.1 RS232C串口红外数据传输系统(643) 6.2 多路RS232、RS485通信的单片机扩展方法(643) 6.3 RS232与CAN总线通信协议转换单元设计(643) 6.4 串行通讯接口RS232/RS485的应用与转换(643) 6.5 RS485智能串行通信接口的设计(643) 6.6 一种通用的RS232/RS485转换器(643) 6.7 基于RS485总线的单片机对等网络的设计与实现(643) 6.8 基于单片机的RS485总线网络扩展方法(644) 6.9 基于RS485的多个LED屏实时显示(644) 6.10 具有隔离性能的RS485中继器及其设计(644) 6.11 一种基于RS485总线的网络协议及其实现方法(644) 6.12 通信协议宏在RS485总线通信中的应用(644) 6.13 RS485和LonWorks协议转换的节点设计(644) 6.14 串行通信的两种格式(645) 6.15 基于ISA总线的RS232/RS485(RS422)通信转换卡(645) 6.16 CAN总线双环光纤网络设计(645) 6.17 CAN总线控制系统的应用层协议CANopen剖析(645) 6.18 CAN总线网络前端模块的接口设计与编程(645) 6.19 CAN总线在低压变电站通信系统中的应用(645) 6.20 CAN中继器设计及其应用(646) 6.21 基于CAN总线的接口控制系统通信卡设计与实现(646) 6.22 一种基于CAN总线的高可靠汽车控制系统的设计与实现(646) 6.23 基于CAN总线的网络传感器的研究与实现(646) 6.24 基于CAN总线技术的一类智能节点开发及应用(646) 6.25 基于SJA1000的CAN总线智能控制系统设计(647) 6.26 一种基于CAN总线的数据采集系统(647) 6.27 车辆变速电控系统ECU和显示器之间CAN总线通信设计(647) 6.28 MB90F540/545系列单片机内置CAN总线及其应用(647) 6.29 利用MCP25050设计CAN总线前端测控节点(647) 6.30 分布式系统中的CAN总线应用设计(647) 6.31 单片机在线编程的CNA总线实现技术(647) 6.32 列车总线控制系统的CAN485总线网关设计(648) 6.33 1553B与CAN总线的互连(648) 6.34 基于PCI9052的CAN总线控制卡及WDM驱动程序设计(648) 6.35 在EPP模式下利用并口实现上位机与CAN总线的数据通信(648) 6.36 无驱动USB认证模块在电子商务中的应用(648) 6.37 基于DeviceNET网络的变频器远程监控(649) 6.38 DeviceNet通讯产品开发(649) 6.39 DeviceNet智能节点的开发(649) 6.40 LonWorks控制器芯片的设计扩展方法(649) 6.41 LonWorks现场总线与USB接口的设计与实现(649) 6.42 基于80C552单片机的现场总线控制器设计与实现(649) 6.43 通用串行总线USB及其应用(650) 6.44 通用串行总线数据传输模型(650) 6.45 通用串行总线的OTG技术(650) 6.46 EZUSB接口设备的软配置技术(650) 6.47 采用PDIUSBD12的USB系统固件程序设计(650) 6.48 一种新型USB2.0高速集线器的设计与实现(650) 6.49 USB接口的CAN总线网络适配器(651) 6.50 USB接口器件在DMA模式下的设计与应用(651) 6.51 USB总线上连接ISA扩充卡的实现(651) 6.52 USB技术在图像传输系统中的应用(651) 6.53 MBUS总线的远程供电及拓扑构成(651) 6.54 USB接口通讯系统应用开发(651) 6.55 EZUSB及其在图像采集中的应用(652) 6.56 EZUSB单片机的开发(652) 6.57 USB OTG 5 V电荷泵(652) 6.58 USB设备控制器缓冲区特性和实现方案(652) 6.59 USB数据传输中CRC校验码的并行算法实现(652) 6.60 USB接口的高速数据采集卡的设计与实现(652) 6.61 基于USB接口终端的PC机互联与接口扩展(653) 6.62 基于USBN9604的通用USB设备接口的研究与开发(653) 6.63 基于USB和GPIF的大规模数据采集系统(653) 6.64 基于USB总线的柴油发动机测控仪的设计与实现(653) 6.65 基于USB双机通信系统中应用程序的研究与实现(653) 6.66 基于USB的高速隔离数据采集系统设计(653) 6.67 基于USB总线的多道脉冲幅度分析器设计(654) 6.68 基于HID类的USB接口技术研究(654) 6.69 基于USB接口的多通道实时数据采集系统(654) 6.70 基于USB总线的数据采集系统(654) 6.71 基于USB总线的高速实时数据采集系统(654) 6.72 工控系统中的USB口CAN总线通信技术(654) 6.73 微控制器在USB接口中的应用(654) 6.74 虚拟仪器与基于USB总线的测试设备(655) 6.75 PDIUSBD12芯片在USB接口电路中的应用(655) 6.76 智能仪器中数据高速传输的USB实现(655) 6.77 一种USB接口的A/D转换卡设计(655) 6.78 采用USBN9602的数据采集系统设计(655) 6.79 iButton技术在安防系统中的应用(655) 6.80 单总线式数字温度传感器MAX6575的应用(656) 6.81 一种新型单总线数字温度传感器的特性与应用(656) 6.82 基于1WireTM技术的单片机单线通信的实现(656) 6.83 1Wire总线数字温度传感器DS18B20及应用(656) 6.84 基于一线总线的远程混凝土温度检测系统(656) 6.85 用嵌入式系统的SPI模块实现I2C总线通信(656) 6.86 ADμC812的I2C总线接口及其应用(656) 6.87 用于嵌入式系统的I2C总线主控器的设计(657) 6.88 I2C总线CMOS型的PB0300数字图像传感器(657) 6.89 采用8位单片机驱动PCI总线网卡的设计方案(657) 6.90 ISP技术在PCI总线接口设计中的应用(657) 6.91 VIC64实现ADSP2106x与VMEbus的接口(657) 6.92 通过串行口访问Modbus现场控制网络(657) 6.93 GPIB口实现及应用(658) 6.94 GPIB芯片TNT4882在多路程控电源中的应用(658) 七、 可靠性及安全性(659) 7.1 单片机应用系统的抗干扰技术(659) 7.2综述单片机控制系统的抗干扰设计(659) 7.3 单片机软件抗干扰编程技术的探讨(659) 7.4 单片机系统中的掉电检测和数据保护(659) 7.5 嵌入式计算机CMOS掉电、校验和出错解决方案(659) 7.6 基于MCS96单片机控制系统的程序失控防洪(659) 7.7 基于MB90F543微控制器的双CAN冗余设计(659) 7.8 MAX1480B在DCS中的应用及提高RS485通讯可靠性的研究(660) 7.9 计算机电磁兼容技术研究(660) 7.10 微控制器的电磁兼容性设计(660) 7.11 电磁兼容屏蔽的设计(660) 7.12 电磁干扰滤波的半导体解决方案(660) 7.13 低电磁干扰时钟振荡器(660) 7.14 电磁兼容技术在变频中的应用(661) 7.15 单片机测控系统干扰分析与抗干扰措施(661) 7.16 单片机控制系统中的抗干扰技术及应用(661) 7.17 地环流抑制技术的探讨(661) 7.18 光电隔离抗干扰技术及应用(661) 7.19计算机控制系统电源抗干扰问题的研究(661) 7.20 计算机电源对电网的干扰及抑制(662) 7.21 变频器应用中的干扰问题及其对策(662) 7.22 DSP控制电机中减少电磁干扰的几项技术(662) 7.23 抗干扰的16位LED显示模块软、硬件设计(662) 7.24 错误检测与纠正电路的设计与实现(662) 7.25 AVR单片机CRC校验码的查表与直接生成(662) 7.26 AVR单片机的RC5和RC6算法比较与改进(662) 7.27 实用可控的按键抖动消除电路(663) 7.28 基于89C51的计算机可锁定加密键盘设计(663) 7.29 一种新的实用安全加密标准算法——Camellia算法(663) 7.30嵌入式指纹识别系统开发(663) 7.31 基于指纹的网络身份认证技术的研究与实现(663) 7.32 基于DSP指纹识别核心算法的设计与实现(663) 7.33 基于DSP和以太网的指纹识别系统(664) 7.34 基于TMS320VC5402的指纹识别系统(664) 7.35 IPM驱动和保护电路的研究(664) 7.36 数字保密电话的设计与实现(664) 八、 DSP技术(665) 8.1 单片机与DSP结合的dsPIC芯片(665) 8.2 一种高性能用于电机控制的嵌入式DSP芯片TMS320LF2401A(665) 8.3 电机控制嵌入式DSP芯片ADMC401及其应用(665) 8.4 一种DSP小系统接口电路可移植性设计方案(665) 8.5 双DSP紧耦合控制系统(665) 8.6 DSP接口效率的分析与提高(665) 8.7 DSP与慢速设备接口的实现(666) 8.8 基于DSP的跟踪频率变化的交流采样技术(666) 8.9 利用DSP和CPLD增加数据采集的可扩展性(666) 8.10 通过JTAG口对DSP外部Flash存储器的在线编程(666) 8.11 TMS320C31与MAX125 A/D转换器的接口设计及应用(666) 8.12 TMS320VC5402 DSP与串行AD73360 A/D转换器的接口设计(666) 8.13 TMS320C54X系列DSP扩展外部Flash存储器的方法及应用(667) 8.14 高速DSP与SDRAM之间信号传输延时的分析及应用(667) 8.15 TMS320F240片内PWM实现D/A扩展功能(667) 8.16 全功能异步收发器与DSP的SPI接口技术(667) 8.17 EPP并口与ADSP2181 DSP的接口设计(667) 8.18 TMS320C5402与PCI总线的接口电路设计(667) 8.19 DSP系统中键盘处理的一种新方法(668) 8.20 嵌入式系统中FFT算法研究(668) 8.21 用定点DSP处理实现浮点DSP仿真(668) 8.22 基于TMS320C55x DSP的代码优化(668) 8.23 嵌入式C语言开发ADSP21XX系列DSP(668) 8.24 TMS320C62X DSP的混合编程研究(668) 8.25 μC/OSⅡ在ADSP21535上的实现(669) 8.26 TMS320VC5402的Flash并行Bootloader技术(669) 8.27 基于铁电存储器编程技术的DSP SPI引导装载方案(669) 8.28 基于DSP的嵌入式系统中BOOTLOADER程序的设计方法(669) 8.29 TMS320C5410烧写Flash实现并行自举引导(669) 8.30 多核DSP的BootLoader程序的实现(669) 8.31 TMS320VC5402外部并行引导装载方法的研究(669) 8.32 RSA算法的TMS320C54x DSP实现(670) 8.33 基于定点DSP的MP3音频编码算法研究及实现(670) 8.34 机器视觉中的图像采集技术(670) 8.35 在Windows NT/2000环境中实现微机与DSP系统的串行通信(670) 8.36 基于单片收发器的DSP无线串行通信设计(670) 8.37 DSP系统的通信与控制接口设计(670) 8.38 高速串行总线在DSP系统中的开发与研究(671) 8.39 TMS320C30处理器与PC机串行口异步双向通讯的方法(671) 8.40 TMS320C54XX系列DSP与PC机间串行通信的实现(671) 8.41 TMS320F240 DSP与C51单片机串行通讯的实现(671) 8.42 基于DSP平台的嵌入式系统与以太网的接口技术(671) 8.43 基于DSP的以太网的数据采集处理系统(671) 8.44 Windows下PC机与DSP通信系统的设计(672) 8.45 DSP与单片机基于MODBUS协议的通信(672) 8.46 基于DSP的CAN总线智能节点通信的设计(672) 8.47 基于TMS320LF2407A的CAN通信程序设计方法(672) 8.48 TMS320F2812内嵌eCAN模块的CAN总线通信(672) 8.49 TMS320LF2407A的CAN控制器应用实例(672) 8.50 TMS320C54xx DSP的USB接口实现(672) 8.51 基于DSP的USB语音传输接口设计(673) 8.52 利用I2C总线实现DSP与音频采样芯片TLV320AIC23的接口控制(673) 8.53 SPI接口协议实现的DSP与其他设备的通信技术(673) 8.54 DSP TMS320C控制器的设计与实现(673) 8.55 基于DSP的网络化无刷直流电动机控制系统(673) 8.56 基于TMS320LF240x DSP的无刷直流电机控制的设计(673) 8.57 基于DSP的远程医疗系统设计(674) 8.58 TMS320VC5402 DSP与ISD4004语音录放芯片的接口设计及其信息管理(674) 8.59 基于TMS320VC5416 DSP的自适应变速率声码器的实现(674) 8.60 基于DSP的嵌入式二维条码识别器(674) 九、 PLD与SoC技术(675) 9.1 系统级芯片设计研究(675) 9.2 一种适合SoC的时钟控制器IP核(675) 9.3 适于SoC的统一设计语言SystemVerilog(675) 9.4 捕获单元的研究和设计(675) 9.5 在测控系统中用IP核实现D/A转换(675) 9.6 高性能、低功耗微控制器IP软核设计综述(676) 9.7 SoC应用中寄存器组设计的自动化(676) 9.8 基于WISHBONE的SoC接口设计(676) 9.9 电机控制的MCU芯片设计(676) 9.10 新一代CPLD及其应用(676) 9.11 VHDL及高层综合(676) 9.12 FPGA设计网络与技巧(677) 9.13 基于消息驱动机制的VHDL程序设计(677) 9.14 一种应用VHDL语言设计有限状态机控制器的方法(677) 9.15 开发FPGA应用的新设计环境(677) 9.16 VHDL语言在寄存器描述中两个局限性的探讨(677) 9.17 FPGA以ASIC转换: 从原型到生产(677) 9.18 Flash编程器的FPGA实现(678) 9.19 在PLD开发中提高VHDL的综合质量(678) 9.20 使用VHDL进行EDA电路设计(678) 9.21 VHDL在数字系统设计中的运用(678) 9.22 VHDL语言及其在实际电路设计中的简化问题(678) 9.23 FPGA可重构系统结构分析与三态总线设计(678) 9.24 一种用VHDL设计实现的专用数据通讯方案(678) 9.25 基于CPLD的可编程信号调理模块(679) 9.26 CPLD器件在时间统一系统中的应用(679) 9.27 一种基于FPGA的误码性能测试方案(679) 9.28 PCI总线协议的FPGA实现及驱动设计(679) 9.29 基于VHDL的UART IP核设计(679) 9.30 基于RAM结构的CAM的Verilog HDL设计(679) 9.31 基于FPGA实现快速移位器的设计方案比较(680) 9.32 基于Verilog HDL语言的USB收发器设计(680) 9.33 通用异步串行通信电路的VHDL设计与实现(680) 9.34 使用VHDL语言开发计算机中的接口芯片(680) 9.35 一种将CPLD系统扩展成具有远距离通讯的方法(680) 9.36 基于VHDL的异步串行通信电路设计(680) 9.37 基于VHDL的四通道12位SXZ(D/A)模块接口设计(680) 9.38 应用VHDL语言设计A/D和LED显示控制器(681) 9.39 基于FPGA/CPLD和USB技术的无损图像采集卡(681) 9.40 采用VHDL设计电话机自动拨号系统(681) 9.41 基于FPGA的高速高精度频率测量的研究(681) 9.42 利用FPGA解决TMS320C54x与SDRAM的接口问题(681) 9.43 基于FPGA的智能误码测试仪(681) 9.44 DDR SDRAM控制器的FPGA实现(682) 9.45 基于FPGA的SDRAM控制器设计(682) 9.46 基于FPGA技术的以太网远程网桥的实现(682) 9.47 基于FPGA的PCI总线接口设计(682) 9.48 PCI总线控制器的VHDL设计与FPGA实现(682) 9.49 用FPGA实现数据远距离的高精度传输(682) 9.50 实现PWM脉宽调制的FPGA芯片研制(683) 9.51 基于FPGA的数控交流电源设计(683) 9.52 FPGA控制实现图像系统视频图像采集(683) 9.53 图像相关系统中的两维FFT的FPGA实现(683) 9.54 基于FPGA的多路模拟量、数字量采集与处理系统(683) 9.55 基于CPLD的线阵CCD数据采集系统的开发(683) 9.56 基于CPLD的电子安全系统接口电路设计(684) 9.57 串口通信星型连接的CPLD实现(684) 9.58 用CPLD控制曼彻斯特编解码器(684) 9.59 一种基于CPLD的I/O总线驱动液晶显示的方法(684) 9.60 用CPLD实现中央信号装置设计(684) 9.61 基于CPLD的直流电动机PWM驱动器设计(684) 9.62 CPLD器件在电机调速中的应用(685) 9.63 用CPLD设计高精度超声液位检测系统(685) 9.64 基于CPLD集成芯片FLEX6016实现DDS技术的任意波形发生器的研制(685) 9.65 基于CPLD的高速视频采集/转发系统设计(685) 十、 典型应用技术(686) 10.1 ARM核SoC EP7312及其EP7312显控系统的设计(686) 10.2 基于32位高性能嵌入式处理器的门禁考勤系统(686) 10.3 ARM CPU S3C44B0X与C54X DSP的接口设计(686) 10.4 AT89C2051单片机在焊缝自动跟踪系统中的应用(686) 10.5 基于89C2051单片机的远距离高精度温度测控电路(686) 10.6 P87LPC768单片机在电动机保护器的应用(686) 10.7 用PIC16F877构成的二线制温度变送器(687) 10.8 一种基于M68HC08和DS1820的温度监控系统(687) 10.9 基于ADμC824的便携式数据采集仪的设计(687) 10.10 ADμC812开发板的内燃机试验数据采集系统(687) 10.11 基于MSP430步进电机驱动位移检测系统的研制(687) 10.12 一种基于MSP430F413的智能IC卡热量表系统(687) 10.13 用SPCE061A单片机构成的控制式计热表(688) 10.14 TMS320C54XX系列DSP异步串行数据传输的研究与实现(688) 10.15 SA9904B在电力参数远程测控系统中的应用(688) 10.16 基于MSC1210的多路高精度温度采集系统模块(688) 10.17 基于ST72单片机的快速充电系统(688) 10.18 一种新型的IGBT短路保护电路的设计(688) 10.19 基于单片机的智能报警呼叫系统(689) 10.20 一种基于单片微机的步进电机控制系统(689) 10.21 I2C串行总线技术在DSP系统中的虚拟实现(689) 10.22 PS7219在LED光柱显示中的应用(689) 10.23 高精度时钟芯片SD2001E及其应用(689) 10.24 非接触式e5551读写器的开发(689) 10.25 级联驱动LED的MAX7221在智能测控仪器中的应用(690) 10.26 电机控制芯片TPIC2101的一个应用(690) 10.27 用MC9S12H256实现异步电机变频调速(690) 10.28 基于实时时钟芯片X1228的电源控制器设计(690) 10.29 用ST72141实现无刷直流电机的控制(690) 10.30 采用PCI9052及GP2010实现GPS信号采集(690) 10.31 基于TM1300的可视电话终端研究(691) 10.32 PSD913F2在一种电台中的应用(691) 10.33 极低功耗无线收发集成芯片CC1000(691) 10.34 单片机与AD1555/AD1556的接口和软件设计(691) 10.35 使用TEMIC感应卡技术的智能电子门锁系统(691) 10.36 媒体信号处理器MAPCA及其应用实例(691) 10.37 基于无线数字温度传感器的多点温度测量系统设计(692) 10.38 基于PCI总线的高速高精度实时数据采集系统(692) 10.39 用一片8D锁存器实现的单片机键显接口电路(692) 10.40 旋钮式键盘及其与AT89C52的接口技术(692) 10.41 基于模/数一体化设计的交流伺服控制系统(692) 10.42 多功能智能函数信号发生器的设计(692) 10.43 高精度智能转速测量模板的设计(693) 10.44 家庭GSM短消息遥控监测系统(693) 10.45数字单总线环境状态监控系统的设计(693) 10.46 非接触式IC卡预收费电度表的设计(693) 10.47 AM30LV0064D在单片机系统中的典型应用(693)
上传时间: 2013-11-06
上传用户:569342831
介绍了无线收发系统的设计过程,该系统以FPGA作为数字中频处理部分,发射机采用FM调制对信号进行处理,接收机采用数字下变频与欠采样技术,将中频信号降采样后解调,得到原信号。系统采用分模块式设计,对电路各个模块的功能和实现加以说明,设计思路灵活,结构清晰。电路在Protel99中设计完成,并用VerilogHDL语言对数字中频进行编程和程序仿真。系统已经做成实体,可以实现信号的无线发射与接收,达到设计提出的要求。
上传时间: 2013-10-16
上传用户:a1054751988
PCB 布线原则连线精简原则连线要精简,尽可能短,尽量少拐弯,力求线条简单明了,特别是在高频回路中,当然为了达到阻抗匹配而需要进行特殊延长的线就例外了,例如蛇行走线等。安全载流原则铜线的宽度应以自己所能承载的电流为基础进行设计,铜线的载流能力取决于以下因素:线宽、线厚(铜铂厚度)、允许温升等,下表给出了铜导线的宽度和导线面积以及导电电流的关系(军品标准),可以根据这个基本的关系对导线宽度进行适当的考虑。印制导线最大允许工作电流(导线厚50um,允许温升10℃)导线宽度(Mil) 导线电流(A) 其中:K 为修正系数,一般覆铜线在内层时取0.024,在外层时取0.048;T 为最大温升,单位为℃;A 为覆铜线的截面积,单位为mil(不是mm,注意);I 为允许的最大电流,单位是A。电磁抗干扰原则电磁抗干扰原则涉及的知识点比较多,例如铜膜线的拐弯处应为圆角或斜角(因为高频时直角或者尖角的拐弯会影响电气性能)双面板两面的导线应互相垂直、斜交或者弯曲走线,尽量避免平行走线,减小寄生耦合等。一、 通常一个电子系统中有各种不同的地线,如数字地、逻辑地、系统地、机壳地等,地线的设计原则如下:1、 正确的单点和多点接地在低频电路中,信号的工作频率小于1MHZ,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而应采用一点接地。当信号工作频率大于10MHZ 时,如果采用一点接地,其地线的长度不应超过波长的1/20,否则应采用多点接地法。2、 数字地与模拟地分开若线路板上既有逻辑电路又有线性电路,应尽量使它们分开。一般数字电路的抗干扰能力比较强,例如TTL 电路的噪声容限为0.4~0.6V,CMOS 电路的噪声容限为电源电压的0.3~0.45 倍,而模拟电路只要有很小的噪声就足以使其工作不正常,所以这两类电路应该分开布局布线。3、 接地线应尽量加粗若接地线用很细的线条,则接地电位会随电流的变化而变化,使抗噪性能降低。因此应将地线加粗,使它能通过三倍于印制板上的允许电流。如有可能,接地线应在2~3mm 以上。4、 接地线构成闭环路只由数字电路组成的印制板,其接地电路布成环路大多能提高抗噪声能力。因为环形地线可以减小接地电阻,从而减小接地电位差。二、 配置退藕电容PCB 设计的常规做法之一是在印刷板的各个关键部位配置适当的退藕电容,退藕电容的一般配置原则是:?电电源的输入端跨½10~100uf的的电解电容器,如果印制电路板的位置允许,采Ó100uf以以上的电解电容器抗干扰效果会更好¡���?原原则上每个集成电路芯片都应布置一¸0.01uf~`0.1uf的的瓷片电容,如遇印制板空隙不够,可Ã4~8个个芯片布置一¸1~10uf的的钽电容(最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感,最好使用钽电容或聚碳酸酝电容)。���?对对于抗噪能力弱、关断时电源变化大的器件,ÈRA、¡ROM存存储器件,应在芯片的电源线和地线之间直接接入退藕电容¡���?电电容引线不能太长,尤其是高频旁路电容不能有引线¡三¡过过孔设¼在高ËPCB设设计中,看似简单的过孔也往往会给电路的设计带来很大的负面效应,为了减小过孔的寄生效应带来的不利影响,在设计中可以尽量做到£���?从从成本和信号质量两方面来考虑,选择合理尺寸的过孔大小。例如¶6- 10层层的内存模¿PCB设设计来说,选Ó10/20mi((钻¿焊焊盘)的过孔较好,对于一些高密度的小尺寸的板子,也可以尝试使Ó8/18Mil的的过孔。在目前技术条件下,很难使用更小尺寸的过孔了(当孔的深度超过钻孔直径µ6倍倍时,就无法保证孔壁能均匀镀铜);对于电源或地线的过孔则可以考虑使用较大尺寸,以减小阻抗¡���?使使用较薄µPCB板板有利于减小过孔的两种寄生参数¡���? PCB板板上的信号走线尽量不换层,即尽量不要使用不必要的过孔¡���?电电源和地的管脚要就近打过孔,过孔和管脚之间的引线越短越好¡���?在在信号换层的过孔附近放置一些接地的过孔,以便为信号提供最近的回路。甚至可以ÔPCB板板上大量放置一些多余的接地过孔¡四¡降降低噪声与电磁干扰的一些经Ñ?能能用低速芯片就不用高速的,高速芯片用在关键地方¡?可可用串一个电阻的方法,降低控制电路上下沿跳变速率¡?尽尽量为继电器等提供某种形式的阻尼,ÈRC设设置电流阻尼¡?使使用满足系统要求的最低频率时钟¡?时时钟应尽量靠近到用该时钟的器件,石英晶体振荡器的外壳要接地¡?用用地线将时钟区圈起来,时钟线尽量短¡?石石英晶体下面以及对噪声敏感的器件下面不要走线¡?时时钟、总线、片选信号要远ÀI/O线线和接插件¡?时时钟线垂直ÓI/O线线比平行ÓI/O线线干扰小¡? I/O驱驱动电路尽量靠½PCB板板边,让其尽快离¿PC。。对进ÈPCB的的信号要加滤波,从高噪声区来的信号也要加滤波,同时用串终端电阻的办法,减小信号反射¡? MCU无无用端要接高,或接地,或定义成输出端,集成电路上该接电源、地的端都要接,不要悬空¡?闲闲置不用的门电路输入端不要悬空,闲置不用的运放正输入端接地,负输入端接输出端¡?印印制板尽量使Ó45折折线而不Ó90折折线布线,以减小高频信号对外的发射与耦合¡?印印制板按频率和电流开关特性分区,噪声元件与非噪声元件呀距离再远一些¡?单单面板和双面板用单点接电源和单点接地、电源线、地线尽量粗¡?模模拟电压输入线、参考电压端要尽量远离数字电路信号线,特别是时钟¡?对¶A/D类类器件,数字部分与模拟部分不要交叉¡?元元件引脚尽量短,去藕电容引脚尽量短¡?关关键的线要尽量粗,并在两边加上保护地,高速线要短要直¡?对对噪声敏感的线不要与大电流,高速开关线并行¡?弱弱信号电路,低频电路周围不要形成电流环路¡?任任何信号都不要形成环路,如不可避免,让环路区尽量小¡?每每个集成电路有一个去藕电容。每个电解电容边上都要加一个小的高频旁路电容¡?用用大容量的钽电容或聚酷电容而不用电解电容做电路充放电储能电容,使用管状电容时,外壳要接地¡?对对干扰十分敏感的信号线要设置包地,可以有效地抑制串扰¡?信信号在印刷板上传输,其延迟时间不应大于所有器件的标称延迟时间¡环境效应原Ô要注意所应用的环境,例如在一个振动或者其他容易使板子变形的环境中采用过细的铜膜导线很容易起皮拉断等¡安全工作原Ô要保证安全工作,例如要保证两线最小间距要承受所加电压峰值,高压线应圆滑,不得有尖锐的倒角,否则容易造成板路击穿等。组装方便、规范原则走线设计要考虑组装是否方便,例如印制板上有大面积地线和电源线区时(面积超¹500平平方毫米),应局部开窗口以方便腐蚀等。此外还要考虑组装规范设计,例如元件的焊接点用焊盘来表示,这些焊盘(包括过孔)均会自动不上阻焊油,但是如用填充块当表贴焊盘或用线段当金手指插头,而又不做特别处理,(在阻焊层画出无阻焊油的区域),阻焊油将掩盖这些焊盘和金手指,容易造成误解性错误£SMD器器件的引脚与大面积覆铜连接时,要进行热隔离处理,一般是做一¸Track到到铜箔,以防止受热不均造成的应力集Ö而导致虚焊£PCB上上如果有¦12或或方Ð12mm以以上的过孔时,必须做一个孔盖,以防止焊锡流出等。经济原则遵循该原则要求设计者要对加工,组装的工艺有足够的认识和了解,例È5mil的的线做腐蚀要±8mil难难,所以价格要高,过孔越小越贵等热效应原则在印制板设计时可考虑用以下几种方法:均匀分布热负载、给零件装散热器,局部或全局强迫风冷。从有利于散热的角度出发,印制板最好是直立安装,板与板的距离一般不应小Ó2c,,而且器件在印制板上的排列方式应遵循一定的规则£同一印制板上的器件应尽可能按其发热量大小及散热程度分区排列,发热量小或耐热性差的器件(如小信号晶体管、小规模集³电路、电解电容等)放在冷却气流的最上(入口处),发热量大或耐热性好的器件(如功率晶体管、大规模集成电路等)放在冷却Æ流最下。在水平方向上,大功率器件尽量靠近印刷板的边沿布置,以便缩短传热路径;在垂直方向上,大功率器件尽量靠近印刷板上方布置£以便减少这些器件在工作时对其他器件温度的影响。对温度比较敏感的器件最好安置在温度最低的区域(如设备的µ部),千万不要将它放在发热器件的正上方,多个器件最好是在水平面上交错布局¡设备内印制板的散热主要依靠空气流动,所以在设计时要研究空气流动的路径,合理配置器件或印制电路板。采用合理的器件排列方式,可以有效地降低印制电路的温升。此外通过降额使用,做等温处理等方法也是热设计中经常使用的手段¡
上传时间: 2015-01-02
上传用户:15070202241
随着高频微波在日常生活上的广泛应用,例如行动电话、无线个人计算机、无线网络等,高频电路的技术也日新月异。良好的高频电路设计的实现与改善,则建立在于精确的组件模型的基础上。被动组件如电感、滤波器等的电路模型与电路制作的材料、制程有紧密的关系,而建立这些组件等效电路模型的方法称为参数萃取。 早期的电感制作以金属绕线为主要的材料与技术,而近年来,由于高频与高速电路的应用日益广泛,加上电路设计趋向轻薄短小,电感制作的材质与技术也不断的进步。例如射频机体电路(RFIC)运用硅材质,微波集成电路则广泛的运用砷化镓(GaAs)技术;此外,在低成本的无线通讯射频应用上,如混合(Hybrid)集成电路则运用有机多芯片模块(MCMs)结合传统的玻璃基板制程,以及低温共烧陶瓷(LTCC)技术,制作印刷式平面电感等,以提升组件的质量与效能,并减少体积与成本。 本章的重点包涵探讨电感的原理与专有名词,以及以常见的电感结构,并分析影响电感效能的主要因素与其电路模型,最后将以电感的模拟设计为例,说明电感参数的萃取。
上传时间: 2014-06-16
上传用户:南国时代
近20年来以蜂窝移动通信为龙头的无线应用技术,包括PCS电话、无线局域网(WLAN)、全球定位系统(GPS).直播电视服务(I)BS)、本地多点分布系统(LMDS)和射频识别系统(RFID)等在内,已经获得了戶大的发展。人们越来越清楚地认识到射设计在整个尤线应用系统中举足轻重的地位,因此目前各高等院校的通信电子类本科专业都巳把高频电路或通信电路作为--门主要的专业基础课。
上传时间: 2021-11-14
上传用户:
随着现在高科技的进步,人们的生活水平有了很大的提高。对环境的婴求也越来越高,环境问题开始得到社会的重视。目前,环境监测发展的个重要方向是开发适合中国国情、价格低廉的远程监测系统,而环境监测系统中极为重要的一部分就是如何获得环境参数,只有获得环境参数才能进行后面的分析、决策工作,无线传感器网络能够通过各类集成化的微型传感器协作地实时监测、感知和采集各种环境或监测对象的信息,并传达给用户,具有可快速部署、无人值守,功耗低、成本低等优点,十分适合应用于环境监测系统本文基于 ZisBee协议设计了用于环境监测的无线传感器网络节点,该节点采用超低功耗的MSP430单片机和CC242024G射频芯片,并移植了完全符合 ZigBee2006标准的协议栈,在协议栈上运行自己的脸测程序,能够实时地采集周围环境的温度,湿度和大气压力,并自动校正,将测量的数据通过无线传感器网络传输给下一个节点。该节点体积小,功耗低,并且具有兼容性,能够和不同件平台混合组网,实现应用层的完全致,不但方便了程序开发,而且能使灵活组网,实现zgBe网络的最大优化本文主要对环境监测无线传感器网络的节点的软硬件设计进行了介绍,硬件方面重点介绍了数据采集模块,数据处理模块的接口设计,无线讯模块的板上天线设计、巴伦电路和高频电路设计要点。软件方面重点介绍了测量程序的设计,CC2420无线通讯程序的设计,板上移植的 Z-Stack结构,以及针对环境监测的应用所进行的开发。最后对节点进行了组网实验,将设计节点和CC2430节点故在一起组网,通过 Packet Stiller工具对通讯信息进行监控和解析。实验证明了混合组网的完全可行性,并且通讯良好,信号稳定关键词:无线传感器网络,ZigBee,,环境监测,MSP43,CC2420
上传时间: 2022-03-14
上传用户: