超声波电机(Ultrasonic motors,简称USM)是一种全新原理的直接驱动电机,它利用压电陶瓷逆压电效应激发的超声振动作为驱动力,通过定转子间的摩擦力来驱动转子运动。与传统的电磁电机相比,它具有低速大转矩、无电磁干扰、动作响应快、运行无噪声、无输入自锁等卓越特性,在非连续运动领域、精密控制领域比传统的电磁电机性能优越得多。超声波电机在工业控制系统、汽车专用电器、精密仪器仪表、办公自动化设备、智能机器人等领域有广阔的应用前景,近年来倍受科技界和工业界的重视,成为当前机电控制领域的一个研究热点。 本文主要以行波型超声波电机的驱动控制技术为研究对象,引入嵌入式系统理念,设计并制作了超声波电机的驱动控制系统,并对超声波电机的速度与定位控制做了深入的研究。本文主要研究内容及成果如下: 介绍了超声波电机的工作原理、特点及其应用前景,总结了国内外超声波电机驱动控制技术的发展历史和研究现状,以及今后我国超声波电机驱动控制技术的发展方向,明确了本文的研究内容。 结合嵌入式系统特点及其开发方法,详细介绍了超声波电机嵌入式驱动控制系统的硬件和软件设计过程,并总结了硬件、软件的调试过程。最后,对所设计系统性能进行了实验测试和数据分析。 采用DDS技术解决超声波电机所需要的高频驱动电源和数字控制的问题。本文设计的以ARM控制器为核心,频率、相位、幅值均可调的双通道信号发生器,具有频率和相位差控制精度高的特点。 本文介绍了速度与位置的常用控制策略。设计并搭建了基于增量式PID的速度和基于模糊PID的位置控制系统。速度控制采用增量式PID调节,其控制策略简单、易行,通过实验选择合适的参数能适应一般的控制精度要求。定位控制则采用模糊PID控制策略,该策略将模糊控制不需要精确的数学模型、收敛速度快的特点与PID简单易行、能消除稳态误差的优点相结合,改善了模糊控制器稳态性能,使电机定位控制精度达到0.0880。
上传时间: 2013-07-16
上传用户:wdq1111
电加热炉是典型工业过程控制对象,其温度控制具有升温单向性,大惯性,纯滞后,时变性等特点,很难用数学方法建立精确的模型和确定参数。而PID控制因其成熟,容易实现,并具有可消除稳态误差的优点,在大多数情况下可以满足系统性能要求,但其性能取决于参数的整定情况。且快速性和超调量之间存在矛盾,使其不一定满足快速升温、超调小的技术要求。模糊控制在快速性和保持较小的超调量方面有着自身的优势,但其理论并不完善,算法复杂,控制过程会存在稳态误差。 将模糊控制算法引入传统的加热炉控制系统构成智能模糊控制系统,利用模糊控制规则自适应在线修改PID参数,构成模糊自整定:PID控制系统,借此提高其控制效果。 基于PID控制算法,以ADuC845单片机为主体,构成一个能处理较复杂数据和控制功能的智能控制器,使其既可作为独立的单片机控制系统,又可与微机配合构成两级控制系统。该控制器控制精度高,具有较高的灵活性和可靠性。 2 温度控制系统硬件设计 该系统设计的硬件设计主要由单片机主控、前向通道、后向通道、人机接口和接口扩展等模块组成,如图l所示。由图1可见,以内含C52兼容单片机的ADuC845为控制核心.配有640 KB的非易失RAM数据存储器、外扩键盘输人、320x240点阵的图形液晶显示器进行汉字、图形、曲线和数据显示,超温报警装置等外围电路;预留微型打印机接口,可以现场打印输出结果;预留RS232接口,能和PC机联机,将现场检测的数据传输至PC机来进一步处理、显示、打印和存档。
上传时间: 2013-10-11
上传用户:vodssv
单片机应用系统抗干扰技术:第1章 电磁干扰控制基础. 1.1 电磁干扰的基本概念1 1.1.1 噪声与干扰1 1.1.2 电磁干扰的形成因素2 1.1.3 干扰的分类2 1.2 电磁兼容性3 1.2.1 电磁兼容性定义3 1.2.2 电磁兼容性设计3 1.2.3 电磁兼容性常用术语4 1.2.4 电磁兼容性标准6 1.3 差模干扰和共模干扰8 1.3.1 差模干扰8 1.3.2 共模干扰9 1.4 电磁耦合的等效模型9 1.4.1 集中参数模型9 1.4.2 分布参数模型10 1.4.3 电磁波辐射模型11 1.5 电磁干扰的耦合途径14 1.5.1 传导耦合14 1.5.2 感应耦合(近场耦合)15 .1.5.3 电磁辐射耦合(远场耦合)15 1.6 单片机应用系统电磁干扰控制的一般方法16 第2章 数字信号耦合与传输机理 2.1 数字信号与电磁干扰18 2.1.1 数字信号的开关速度与频谱18 2.1.2 开关暂态电源尖峰电流噪声22 2.1.3 开关暂态接地反冲噪声24 2.1.4 高速数字电路的EMI特点25 2.2 导线阻抗与线间耦合27 2.2.1 导体交直流电阻的计算27 2.2.2 导体电感量的计算29 2.2.3 导体电容量的计算31 2.2.4 电感耦合分析32 2.2.5 电容耦合分析35 2.3 信号的长线传输36 2.3.1 长线传输过程的数学描述36 2.3.2 均匀传输线特性40 2.3.3 传输线特性阻抗计算42 2.3.4 传输线特性阻抗的重复性与阻抗匹配44 2.4 数字信号传输过程中的畸变45 2.4.1 信号传输的入射畸变45 2.4.2 信号传输的反射畸变46 2.5 信号传输畸变的抑制措施49 2.5.1 最大传输线长度的计算49 2.5.2 端点的阻抗匹配50 2.6 数字信号的辐射52 2.6.1 差模辐射52 2.6.2 共模辐射55 2.6.3 差模和共模辐射比较57 第3章 常用元件的可靠性能与选择 3.1 元件的选择与降额设计59 3.1.1 元件的选择准则59 3.1.2 元件的降额设计59 3.2 电阻器60 3.2.1 电阻器的等效电路60 3.2.2 电阻器的内部噪声60 3.2.3 电阻器的温度特性61 3.2.4 电阻器的分类与主要参数62 3.2.5 电阻器的正确选用66 3.3 电容器67 3.3.1 电容器的等效电路67 3.3.2 电容器的种类与型号68 3.3.3 电容器的标志方法70 3.3.4 电容器引脚的电感量71 3.3.5 电容器的正确选用71 3.3.6 电容器使用注意事项73 3.4 电感器73 3.4.1 电感器的等效电路74 3.4.2 电感器使用的注意事项74 3.5 数字集成电路的抗干扰性能75 3.5.1 噪声容限与抗干扰能力75 3.5.2 施密特集成电路的噪声容限77 3.5.3 TTL数字集成电路的抗干扰性能78 3.5.4 CMOS数字集成电路的抗干扰性能79 3.5.5 CMOS电路使用中注意事项80 3.5.6 集成门电路系列型号81 3.6 高速CMOS 54/74HC系列接口设计83 3.6.1 54/74HC 系列芯片特点83 3.6.2 74HC与TTL接口85 3.6.3 74HC与单片机接口85 3.7 元器件的装配工艺对可靠性的影响86 第4章 电磁干扰硬件控制技术 4.1 屏蔽技术88 4.1.1 电场屏蔽88 4.1.2 磁场屏蔽89 4.1.3 电磁场屏蔽91 4.1.4 屏蔽损耗的计算92 4.1.5 屏蔽体屏蔽效能的计算99 4.1.6 屏蔽箱的设计100 4.1.7 电磁泄漏的抑制措施102 4.1.8 电缆屏蔽层的屏蔽原理108 4.1.9 屏蔽与接地113 4.1.10 屏蔽设计要点113 4.2 接地技术114 4.2.1 概述114 4.2.2 安全接地115 4.2.3 工作接地117 4.2.4 接地系统的布局119 4.2.5 接地装置和接地电阻120 4.2.6 地环路问题121 4.2.7 浮地方式122 4.2.8 电缆屏蔽层接地123 4.3 滤波技术126 4.3.1 滤波器概述127 4.3.2 无源滤波器130 4.3.3 有源滤波器138 4.3.4 铁氧体抗干扰磁珠143 4.3.5 贯通滤波器146 4.3.6 电缆线滤波连接器149 4.3.7 PCB板滤波器件154 4.4 隔离技术155 4.4.1 光电隔离156 4.4.2 继电器隔离160 4.4.3 变压器隔离 161 4.4.4 布线隔离161 4.4.5 共模扼流圈162 4.5 电路平衡结构164 4.5.1 双绞线在平衡电路中的使用164 4.5.2 同轴电缆的平衡结构165 4.5.3 差分放大器165 4.6 双绞线的抗干扰原理及应用166 4.6.1 双绞线的抗干扰原理166 4.6.2 双绞线的应用168 4.7 信号线间的串扰及抑制169 4.7.1 线间串扰分析169 4.7.2 线间串扰的抑制173 4.8 信号线的选择与敷设174 4.8.1 信号线型式的选择174 4.8.2 信号线截面的选择175 4.8.3 单股导线的阻抗分析175 4.8.4 信号线的敷设176 4.9 漏电干扰的防止措施177 4.10 抑制数字信号噪声常用硬件措施177 4.10.1 数字信号负传输方式178 4.10.2 提高数字信号的电压等级178 4.10.3 数字输入信号的RC阻容滤波179 4.10.4 提高输入端的门限电压181 4.10.5 输入开关触点抖动干扰的抑制方法181 4.10.6 提高器件的驱动能力184 4.11 静电放电干扰及其抑制184 第5章 主机单元配置与抗干扰设计 5.1 单片机主机单元组成特点186 5.1.1 80C51最小应用系统186 5.1.2 低功耗单片机最小应用系统187 5.2 总线的可靠性设计191 5.2.1 总线驱动器191 5.2.2 总线的负载平衡192 5.2.3 总线上拉电阻的配置192 5.3 芯片配置与抗干扰193 5.3.1去耦电容配置194 5.3.2 数字输入端的噪声抑制194 5.3.3 数字电路不用端的处理195 5.3.4 存储器的布线196 5.4 译码电路的可靠性分析197 5.4.1 过渡干扰与译码选通197 5.4.2 译码方式与抗干扰200 5.5 时钟电路配置200 5.6 复位电路设计201 5.6.1 复位电路RC参数的选择201 5.6.2 复位电路的可靠性与抗干扰分析202 5.6.3 I/O接口芯片的延时复位205 5.7 单片机系统的中断保护问题205 5.7.1 80C51单片机的中断机构205 5.7.2 常用的几种中断保护措施205 5.8 RAM数据掉电保护207 5.8.1 片内RAM数据保护207 5.8.2 利用双片选的外RAM数据保护207 5.8.3 利用DS1210实现外RAM数据保护208 5.8.4 2 KB非易失性随机存储器DS1220AB/AD211 5.9 看门狗技术215 5.9.1 由单稳态电路实现看门狗电路216 5.9.2 利用单片机片内定时器实现软件看门狗217 5.9.3 软硬件结合的看门狗技术219 5.9.4 单片机内配置看门狗电路221 5.10 微处理器监控器223 5.10.1 微处理器监控器MAX703~709/813L223 5.10.2 微处理器监控器MAX791227 5.10.3 微处理器监控器MAX807231 5.10.4 微处理器监控器MAX690A/MAX692A234 5.10.5 微处理器监控器MAX691A/MAX693A238 5.10.6 带备份电池的微处理器监控器MAX1691242 5.11 串行E2PROM X25045245 第6章 测量单元配置与抗干扰设计 6.1 概述255 6.2 模拟信号放大器256 6.2.1 集成运算放大器256 6.2.2 测量放大器组成原理260 6.2.3 单片集成测量放大器AD521263 6.2.4 单片集成测量放大器AD522265 6.2.5 单片集成测量放大器AD526266 6.2.6 单片集成测量放大器AD620270 6.2.7 单片集成测量放大器AD623274 6.2.8 单片集成测量放大器AD624276 6.2.9 单片集成测量放大器AD625278 6.2.10 单片集成测量放大器AD626281 6.3 电压/电流变换器(V/I)283 6.3.1 V/I变换电路..283 6.3.2 集成V/I变换器XTR101284 6.3.3 集成V/I变换器XTR110289 6.3.4 集成V/I变换器AD693292 6.3.5 集成V/I变换器AD694299 6.4 电流/电压变换器(I/V)302 6.4.1 I/V变换电路302 6.4.2 RCV420型I/V变换器303 6.5 具有放大、滤波、激励功能的模块2B30/2B31305 6.6 模拟信号隔离放大器313 6.6.1 隔离放大器ISO100313 6.6.2 隔离放大器ISO120316 6.6.3 隔离放大器ISO122319 6.6.4 隔离放大器ISO130323 6.6.5 隔离放大器ISO212P326 6.6.6 由两片VFC320组成的隔离放大器329 6.6.7 由两光耦组成的实用线性隔离放大器333 6.7 数字电位器及其应用336 6.7.1 非易失性数字电位器x9221336 6.7.2 非易失性数字电位器x9241343 6.8 传感器供电电源的配置及抗干扰346 6.8.1 传感器供电电源的扰动补偿347 6.8.2 单片集成精密电压芯片349 6.8.3 A/D转换器芯片提供基准电压350 6.9 测量单元噪声抑制措施351 6.9.1 外部噪声源的干扰及其抑制351 6.9.2 输入信号串模干扰的抑制352 6.9.3 输入信号共模干扰的抑制353 6.9.4 仪器仪表的接地噪声355 第7章 D/A、A/D单元配置与抗干扰设计 7.1 D/A、A/D转换器的干扰源357 7.2 D/A转换原理及抗干扰分析358 7.2.1 T型电阻D/A转换器359 7.2.2 基准电源精度要求361 7.2.3 D/A转换器的尖峰干扰362 7.3 典型D/A转换器与单片机接口363 7.3.1 并行12位D/A转换器AD667363 7.3.2 串行12位D/A转换器MAX5154370 7.4 D/A转换器与单片机的光电接口电路377 7.5 A/D转换器原理与抗干扰性能378 7.5.1 逐次比较式ADC原理378 7.5.2 余数反馈比较式ADC原理378 7.5.3 双积分ADC原理380 7.5.4 V/F ADC原理382 7.5.5 ∑Δ式ADC原理384 7.6 典型A/D转换器与单片机接口387 7.6.18 位并行逐次比较式MAX 118387 7.6.28 通道12位A/D转换器MAX 197394 7.6.3 双积分式A/D转换器5G14433399 7.6.4 V/F转换器AD 652在A/D转换器中的应用403 7.7 采样保持电路与抗干扰措施408 7.8 多路模拟开关与抗干扰措施412 7.8.1 CD4051412 7.8.2 AD7501413 7.8.3 多路开关配置与抗干扰技术413 7.9 D/A、A/D转换器的电源、接地与布线416 7.10 精密基准电压电路与噪声抑制416 7.10.1 基准电压电路原理417 7.10.2 引脚可编程精密基准电压源AD584418 7.10.3 埋入式齐纳二极管基准AD588420 7.10.4 低漂移电压基准MAX676/MAX677/MAX678422 7.10.5 低功率低漂移电压基准MAX873/MAX875/MAX876424 7.10.6 MC1403/MC1403A、MC1503精密电压基准电路430 第8章 功率接口与抗干扰设计 8.1 功率驱动元件432 8.1.1 74系列功率集成电路432 8.1.2 75系列功率集成电路433 8.1.3 MOC系列光耦合过零触发双向晶闸管驱动器435 8.2 输出控制功率接口电路438 8.2.1 继电器输出驱动接口438 8.2.2 继电器—接触器输出驱动电路439 8.2.3 光电耦合器—晶闸管输出驱动电路439 8.2.4 脉冲变压器—晶闸管输出电路440 8.2.5 单片机与大功率单相负载的接口电路441 8.2.6 单片机与大功率三相负载间的接口电路442 8.3 感性负载电路噪声的抑制442 8.3.1 交直流感性负载瞬变噪声的抑制方法442 8.3.2 晶闸管过零触发的几种形式445 8.3.3 利用晶闸管抑制感性负载的瞬变噪声447 8.4 晶闸管变流装置的干扰和抑制措施448 8.4.1 晶闸管变流装置电气干扰分析448 8.4.2 晶闸管变流装置的抗干扰措施449 8.5 固态继电器451 8.5.1 固态继电器的原理和结构451 8.5.2 主要参数与选用452 8.5.3 交流固态继电器的使用454 第9章 人机对话单元配置与抗干扰设计 9.1 键盘接口抗干扰问题456 9.2 LED显示器的构造与特点458 9.3 LED的驱动方式459 9.3.1 采用限流电阻的驱动方式459 9.3.2 采用LM317的驱动方式460 9.3.3 串联二极管压降驱动方式462 9.4 典型键盘/显示器接口芯片与单片机接口463 9.4.1 8位LED驱动器ICM 7218B463 9.4.2 串行LED显示驱动器MAX 7219468 9.4.3 并行键盘/显示器专用芯片8279482 9.4.4 串行键盘/显示器专用芯片HD 7279A492 9.5 LED显示接口的抗干扰措施502 9.5.1 LED静态显示接口的抗干扰502 9.5.2 LED动态显示接口的抗干扰506 9.6 打印机接口与抗干扰技术508 9.6.1 并行打印机标准接口信号508 9.6.2 打印机与单片机接口电路509 9.6.3 打印机电磁干扰的防护设计510 9.6.4 提高数据传输可靠性的措施512 第10章 供电电源的配置与抗干扰设计 10.1 电源干扰问题概述513 10.1.1 电源干扰的类型513 10.1.2 电源干扰的耦合途径514 10.1.3 电源的共模和差模干扰515 10.1.4 电源抗干扰的基本方法516 10.2 EMI电源滤波器517 10.2.1 实用低通电容滤波器518 10.2.2 双绕组扼流圈的应用518 10.3 EMI滤波器模块519 10.3.1 滤波器模块基础知识519 10.3.2 电源滤波器模块521 10.3.3 防雷滤波器模块531 10.3.4 脉冲群抑制模块532 10.4 瞬变干扰吸收器件532 10.4.1 金属氧化物压敏电阻(MOV)533 10.4.2 瞬变电压抑制器(TVS)537 10.5 电源变压器的屏蔽与隔离552 10.6 交流电源的供电抗干扰方案553 10.6.1 交流电源配电方式553 10.6.2 交流电源抗干扰综合方案555 10.7 供电直流侧抑制干扰措施555 10.7.1 整流电路的高频滤波555 10.7.2 串联型直流稳压电源配置与抗干扰556 10.7.3 集成稳压器使用中的保护557 10.8 开关电源干扰的抑制措施559 10.8.1 开关噪声的分类559 10.8.2 开关电源噪声的抑制措施560 10.9 微机用不间断电源UPS561 10.10 采用晶闸管无触点开关消除瞬态干扰设计方案564 第11章 印制电路板的抗干扰设计 11.1 印制电路板用覆铜板566 11.1.1 覆铜板材料566 11.1.2 覆铜板分类568 11.1.3 覆铜板的标准与电性能571 11.1.4 覆铜板的主要特点和应用583 11.2 印制板布线设计基础585 11.2.1 印制板导线的阻抗计算585 11.2.2 PCB布线结构和特性阻抗计算587 11.2.3 信号在印制板上的传播速度589 11.3 地线和电源线的布线设计590 11.3.1 降低接地阻抗的设计590 11.3.2 减小电源线阻抗的方法591 11.4 信号线的布线原则592 11.4.1 信号传输线的尺寸控制592 11.4.2 线间串扰控制592 11.4.3 辐射干扰的抑制593 11.4.4 反射干扰的抑制594 11.4.5 微机自动布线注意问题594 11.5 配置去耦电容的方法594 11.5.1 电源去耦595 11.5.2 集成芯片去耦595 11.6 芯片的选用与器件布局596 11.6.1 芯片选用指南596 11.6.2 器件的布局597 11.6.3 时钟电路的布置598 11.7 多层印制电路板599 11.7.1 多层印制板的结构与特点599 11.7.2 多层印制板的布局方案600 11.7.3 20H原则605 11.8 印制电路板的安装和板间配线606 第12章 软件抗干扰原理与方法 12.1 概述607 12.1.1 测控系统软件的基本要求607 12.1.2 软件抗干扰一般方法607 12.2 指令冗余技术608 12.2.1 NOP的使用609 12.2.2 重要指令冗余609 12.3 软件陷阱技术609 12.3.1 软件陷阱609 12.3.2 软件陷阱的安排610 12.4 故障自动恢复处理程序613 12.4.1 上电标志设定614 12.4.2 RAM中数据冗余保护与纠错616 12.4.3 软件复位与中断激活标志617 12.4.4 程序失控后恢复运行的方法618 12.5 数字滤波619 12.5.1 程序判断滤波法620 12.5.2 中位值滤波法620 12.5.3 算术平均滤波法621 12.5.4 递推平均滤波法623 12.5.5 防脉冲干扰平均值滤波法624 12.5.6 一阶滞后滤波法626 12.6 干扰避开法627 12.7 开关量输入/输出软件抗干扰设计629 12.7.1 开关量输入软件抗干扰措施629 12.7.2 开关量输出软件抗干扰措施629 12.8 编写软件的其他注意事项630 附录 电磁兼容器件选购信息632
上传时间: 2013-10-20
上传用户:xdqm
Aspen Plus介绍 (物性数据库) · Aspen Plus ---生产装置设计、稳态模拟和优化的大型通用流程模拟系统 · Aspen Plus是大型通用流程模拟系统,源于美国能源部七十年代后期在麻省理工学院(MIT)组织的会 战,开发新型第三代流程模拟软件。该项目称为“过程工程的先进系统”(Advanced System for Process Engineering,简称ASPEN),并于1981年底完成。1982年为了将其商品化,成立了AspenTech公司,并称之为Aspen Plus。该软件经过20多年来不断地改进、扩充和提高,已先后推出了十多个版本,成为举世公认的标准大型流程模拟软件,应用案例数以百万计。全球各大化工、石化、炼油等过程工业制造企业及著名的工程公司都是Aspen Plus的用户。 它以严格的机理模型和先进的技术赢得广大用户的信赖,它具有以下特性: 1. ASPEN PLUS有一个公认的跟踪记录,在一个工艺过程的制造的整个生命周期中提供巨大的经济效益,制造生命周期包括从研究与开发经过工程到生产。 2. ASPEN PLUS使用最新的软件工程技术通过它的Microsoft Windows图形界面和交互式客户-服务器模拟结构使得工程生产力最大。 3. ASPEN PLUS拥有精确模拟范围广泛的实际应用所需的工程能力, 这些实际应用包括从炼油到非理想化学系统到含电解质和固体的工艺过程。 4. ASPEN PLUS是AspenTech的集成聪明制造系统技术的一个核心部分, 该技术能在你公司的整个过程工程基本设施范围内捕获过程专业知识并充分利用。 在实际应用中,ASPEN PLUS可以帮助工程师解决快速闪蒸计算、设计一个新的工艺过程、查找一个原油加工装置的故障或者优化一个乙烯全装置的操作等工程和操作的关键问。
上传时间: 2013-11-16
上传用户:我干你啊
利用VHDL语言实现单稳触发电路,稳态时间为系统时钟的整数倍。
上传时间: 2015-06-01
上传用户:wang0123456789
各种电子器件管脚图,THD-1型数字电路实验箱简介,门电路及参数测试,半加器、全加器,数据选择器,数码比较器,译码器和数码显示器,锁存器和触发器,中规模计数器,双向移位寄存器,三态门和数据总线,半导体存储器,多谐振荡器,单稳态触发器,CMOS门电路及集成施密特触发器,集成数模转换器(DAC),逐次渐进型模数转换器(ADC)
上传时间: 2013-12-19
上传用户:heart520beat
CD40系列CD45系列集成芯片DATASHEET数据手册170个芯片技术手册资料合集:4000 CMOS 3输入双或非门1反相器.pdf4001 CMOS 四2输入或非门.pdf4002 CMOS 双4输入或非门.pdf4006 CMOS 18级静态移位寄存器.pdf4007 CMOS 双互补对加反相器.pdf4008 CMOS 4位二进制并行进位全加器.pdf4009 CMOS 六缓冲器-转换器(反相).pdf4010 CMOS 六缓冲器-转换器(同相).pdf40100 CMOS 32位双向静态移位寄存器.pdf40101 CMOS 9位奇偶发生器-校验器.pdf40102 CMOS 8位BCD可预置同步减法计数器.pdf40103 CMOS 8位二进制可预置同步减法计数器.pdf40104 CMOS 4位三态输出双向通用移位寄存器.pdf40105 CMOS 先进先出寄存器.pdf40106 CMOS 六施密特触发器.pdf40107 CMOS 2输入双与非缓冲-驱动器.pdf40108 CMOS 4×4多端寄存.pdf40109 CMOS 四三态输出低到高电平移位器.pdf4011 CMOS 四2输入与非门.pdf40110 CMOS 十进制加减计数-译码-锁存-驱动.pdf40117 CMOS 10线—4线BCD优先编码器.pdf4012 CMOS 双4输入与非门.pdf4013 CMOS 带置位-复位的双D触发器.pdf4014 CMOS 8级同步并入串入-串出移位寄存器.pdf40147 CMOS 10线—4线BCD优先编码器.pdf4015 CMOS 双4位串入-并出移位寄存器.pdf4016 CMOS 四双向开关.pdf40160 CMOS 非同步复位可预置BCD计数器.pdf40161 CMOS 非同步复位可预置二进制计数器.pdf40162 CMOS 同步复位可预置BCD计数器.pdf40163 CMOS 同步复位可预置二进制计数器.pdf4017 CMOS 十进制计数器-分频器.pdf40174 CMOS 六D触发器.pdf40175 CMOS 四D触发器.pdf4018 CMOS 可预置 1分N 计数器.pdf40181 CMOS 4位算术逻辑单元.pdf40182 CMOS 超前进位发生器.pdf4019 CMOS 四与或选译门.pdf40192 CMOS 可预制四位BCD计数器.pdf40193 CMOS 可预制四位二进制计数器.pdf40194 CMOS 4位双向并行存取通用移位寄存器.pdf4020 CMOS 14级二进制串行计数-分频器.pdf40208 CMOS 4×4多端寄存器.pdf4021 CMOS 异步8位并入同步串入-串出寄存器.pdf4022 CMOS 八进制计数器-分频器.pdf4023 CMOS 三3输入与非门.pdf4024 CMOS 7级二进制计数器.pdf4025 CMOS 三3输入或非门.pdf40257 CMOS 四2线-1线数据选择器-多路传输.pdf4026 CMOS 7段显示十进制计数-分频器.pdf4027 CMOS 带置位复位双J-K主从触发器.pdf4028 CMOS BCD- 十进制译码器.pdf4029 CMOS 可预制加-减(十-二进制)计数器.pdf4030 CMOS 四异或门.pdf4031 CMOS 64级静态移位寄存器.pdf4032 CMOS 3位正逻辑串行加法器.pdf4033 CMOS 十进制计数器-消隐7段显示.pdf4034 CMOS 8位双向并、串入-并出寄存器.pdf4035 CMOS 4位并入-并出移位寄存器.pdf4038 CMOS 3位串行负逻辑加法器.pdf4040 CMOS 12级二进制计数-分频器.pdf4041 CMOS 四原码-补码缓冲器.pdf4042 CMOS 四时钟控制 D 锁存器.pdf4043 CMOS 四三态或非 R-S 锁存器.pdf4044 CMOS 四三态与非 R-S 锁存器.pdf4045 CMOS 21位计数器.pdf4046 CMOS PLL 锁相环电路.pdf4047 CMOS 单稳态、无稳态多谐振荡器.pdf4048 CMOS 8输入端多功能可扩展三态门.pdf4049 CMOS 六反相缓冲器-转换器.pdf4050 CMOS 六同相缓冲器-转换器.pdf4051 CMOS 8选1双向模拟开关.pdf4051,2,3.pdf4052 CMOS 双4选1双向模拟开关.pdf4053 CMOS 三2选1双向模拟开关.pdf4054 C
上传时间: 2021-11-09
上传用户:kent
电子电路单片机设计毕业设计论文资料软硬件设计50例资料合集资料0652、14093组成的脉宽调制器电路(电机调速).rar0653、CMOS单通道调制电路.rar0654、DC-AC变换器.rar0655、DC-AC变换器LCD显示电子温度计.rar0656、DC-AC变换器PWM控制式电机速度控制电路.rar0657、DC-AC变换器TC4069UB组成的方波振荡器.rar0658、DC-AC变换器按钮型游戏基准电路.rar0659、DC-AC变换器变形多谐振荡器.rar0660、DC-AC变换器标准多谐振荡器.rar0661、不规则变换循环LED闪烁电路.rar0662、采用3524的PWM式电机速度控制电路.rar0663、超声波鱼缸加氧器.rar0664、车辆转向灯电路.rar0665、出租车空车灯LED环形闪烁电路.rar0666、触摸调光灯.rar0667、触摸开关.rar0668、触摸控制定时器.rar0669、触摸控制转换开关.rar0670、串联式多谐振荡器.rar0671、串入式声控延时开关.rar0672、单结晶体管多谐振荡器.rar0673、单脉冲控制转换开关.rar0674、单脉冲控制转换开关基本电路.rar0675、单稳态多谐振荡器.rar0676、单稳态多谐振荡器组成的定时器电路.rar0677、单轴操纵杆接口电路.rar0678、低电平输出光控电路.rar0679、第三刹车灯电路.rar0680、电场与漏电检测器.rar0681、电动车充电自动控制电路.rar0682、电话机检修测试仪.rar0683、电话检修仪.rar0684、电子节拍器.rar0685、电子锁.rar0686、电子音乐门铃.rar0687、短波无线监听发射器1(100MHz).rar0688、短波无线监听发射器2(100MHz).rar0689、短路检测式报警电路.rar0690、断线检测式报警电路.rar0691、断线式防贼报警电路.rar0692、断续音报警信号发生器.rar0693、多功能密码锁.rar0694、多谐—张弛振荡器.rar0695、发射极耦合式多谐振荡器.rar0696、方波发生器.rar0697、非对称多谐振荡器.rar0698、峰谷用电定时器.rar0699、改进型发射极耦合式多谐振荡器.rar0700、改进型模拟PUT(可编程单结晶体管)器件振荡器.rar
上传时间: 2021-12-10
上传用户:
交流稳压电源已经广泛地应用于科学研究、经济建设、军事设施、医疗仪器以及人民生活等领域,而且用电设备对电源质量要求也日趋严格。传统的交流稳压电源采用模拟电路控制导致了诸如电路复杂、调试困难、元件易老化、输出性能低等固有缺点,已不能满足各种高精密和数字化用电设备的需求。而数字信号处理技术和高性能单片机控制器的应用,可以很好的解决传统稳压电源稳态精度低,动态性能差,监控不易等难题本文正是针对这一问题,设计开发一种高性能数字化交流稳压电源控制器。文章中使用AT89S52单片机作为主控制器,完成了系统的硬件设计。稳压电源控制器是由电压检测反馈装置、主控制器、电机驱动组成,其中单片机控制器是稳压控制系统的关键部分,负责对自耦调压器的输出电压反馈信号进行处理并输出脉冲控制信号来控制电机的运动。系统的硬件设计了电机驱动电路,电压信号的采集等电路。整个硬件系统结构紧凑,工作可靠。关键词:单片机:自耦调压器:步进电机当今世界人民的生活水平不断提高,很多大功率家用电器已经进入普通家庭,电器的广泛使用与电能供应之间的矛盾越来越突出。在用电高峰期,很多地方有电网电压严重下降的现象,而在用电低谷期,电网电压又会升得太高;在一些边远地区,电网电压长期偏低:一些负荷变化较快的地区,电网电压严重波动。这些现象都很容易对用电设备造成损害,甚至有可能带来严重的损失。另一方面,一些医疗设备的工作电压需要很高,这就要求很高的电能质量。由此可见,高稳定度的交流稳压电源具有非常广大的应用空间。最常见、最便宜、最简单的稳压设备就是手动调节的圆柱形自耦调压器,可是它的输出不能自动随着电压的变化而变化。本设计就是对自耦调压器调压经行改造基础上结合单片机的应用而设计的能跟据电网电压自动输出稳定电压的智能交流电源控制器。
上传时间: 2022-03-30
上传用户:
常用4000系列标准数字电路的中文名称资料 型号 器件名称 厂牌 备注 CD4000 双3输入端或非门+单非门 TI CD4001 四2输入端或非门 HIT/NSC/TI/GOL CD4002 双4输入端或非门 NSC CD4006 18位串入/串出移位寄存器 NSC CD4007 双互补对加反相器 NSC CD4008 4位超前进位全加器 NSC CD4009 六反相缓冲/变换器 NSC CD4010 六同相缓冲/变换器 NSC CD4011 四2输入端与非门 HIT/TI CD4012 双4输入端与非门 NSC CD4013 双主-从D型触发器 FSC/NSC/TOS CD4014 8位串入/并入-串出移位寄存器 NSC CD4015 双4位串入/并出移位寄存器 TI CD4016 四传输门 FSC/TI CD4017 十进制计数/分配器 FSC/TI/MOT CD4018 可预制1/N计数器 NSC/MOT CD4019 四与或选择器 PHI CD4020 14级串行二进制计数/分频器 FSC CD4021 08位串入/并入-串出移位寄存器 PHI/NSC CD4022 八进制计数/分配器 NSC/MOT CD4023 三3输入端与非门 NSC/MOT/TI CD4024 7级二进制串行计数/分频器 NSC/MOT/TI CD4025 三3输入端或非门 NSC/MOT/TI CD4026 十进制计数/7段译码器 NSC/MOT/TI CD4027 双J-K触发器 NSC/MOT/TI CD4028 BCD码十进制译码器 NSC/MOT/TI CD4029 可预置可逆计数器 NSC/MOT/TI CD4030 四异或门 NSC/MOT/TI/GOL CD4031 64位串入/串出移位存储器 NSC/MOT/TI CD4032 三串行加法器 NSC/TI CD4033 十进制计数/7段译码器 NSC/TI CD4034 8位通用总线寄存器 NSC/MOT/TI CD4035 4位并入/串入-并出/串出移位寄存 NSC/MOT/TI CD4038 三串行加法器 NSC/TI CD4040 12级二进制串行计数/分频器 NSC/MOT/TI CD4041 四同相/反相缓冲器 NSC/MOT/TI CD4042 四锁存D型触发器 NSC/MOT/TI CD4043 4三态R-S锁存触发器("1"触发) NSC/MOT/TI CD4044 四三态R-S锁存触发器("0"触发) NSC/MOT/TI CD4046 锁相环 NSC/MOT/TI/PHI CD4047 无稳态/单稳态多谐振荡器 NSC/MOT/TI CD4048 4输入端可扩展多功能门 NSC/HIT/TI CD4049 六反相缓冲/变换器 NSC/HIT/TI CD4050 六同相缓冲/变换器 NSC/MOT/TI CD4051 八选一模拟开关 NSC/MOT/TI
上传时间: 2022-05-05
上传用户: